

Searches for Dark Matter with the ATLAS Detector using Resonances with Jets

Karol Krizka

for the ATLAS Collaboration

Why Dark Matter?

Ordinary Matter 5%

Dark Matter 26% CMB Measurements

Dark Energy 69%

Gravitational Lensing

16/05/10

Searching for Dark Matter

To detect Dark Matter, it must interact with Standard Model* somehow.

* aka laboratory equipment

Searching for Dark Matter

To detect Dark Matter, it must interact with Standard Model* somehow.

EFT Dark Matter Model

New particle (Dark Matter) with a parametrizable interaction to the Standard Model.

EFT Dark Matter Model

New particle (Dark Matter) w Works great for heavy Dark Matter, but... the Standard Model.

- not ideal for light Dark Matter
- hides richer phenomenology

PHENO2016 6

Simplified Dark Matter Model

• Model recommended by the LHC Dark Matter Forum

arXiv:1507.00966, arXiv:1603.04156

- An (axial) mediator (mass m_R) couples to Dark Matter (mass m_{DM})
- Independent couplings to quarks (\mathbf{g}_{SM} , flavor independent) and DM (\mathbf{g}_{DM})
- Common model used by all searches and all LHC experiments!

Why Jets in DM Signal?

Dark Matter particles are not seen by the detector

q

 g_{SM}

Α

MET+X Searches

- Produce DM with an ISR object
- Search for momentum imbalance in transverse

plane (MeT) from DM

Dijet Searches

- Decay Z' back into quarks and look for a bump in m_{jj} spectrum
- A signal does not mean DM, but lack of signal will constrain the simplified DM model

 χ

 $\bar{\chi}$

MET+Jet EXOT-2015-03

- Inclusive and exclusive signal regions in MeT
 - 6 bins in range 250 GeV to 700 GeV
- Z→vv+jets background determined from W→µv+jets events
 - Similar data-driven technique for other boson backgrounds
 - Simultaneous fit done in CRs+SR
- Jet smearing for multi-jet background
- Other backgrounds determined using MC

9 PHENO2016

MET+Jet Results

Events / 50 GeV

- No signal seen \rightarrow limits
- Also limits on extra dimension and SUSY models

MET+Photon EXOT-2015-05

- Single bin Signal Region (and control regions)
- Z/W background k-factors estimated via simultaneous fits to Z/W control regions
 - Same k-factor for $Z \rightarrow vv + \gamma$ as for $Z \rightarrow ll + \gamma$
- Data-driven estimation of photon fakes
 - Miss-ID'ed electrons from e+γ sample scaled by measured miss-ID rate
 - ABCD method for miss-ID'ed jets

Single-muon CR

Events / 150 GeV

10³

10²

10

ATLAS

√s=13 TeV, 3.2 fb⁻¹

16/05/10

data

 $W(\rightarrow lv)\gamma$

 $Z(\rightarrow ||)\gamma$

 $Z(\rightarrow vv)\gamma$ γ + jets

Fake Photons

MET+Photon Results

- No signal seen \rightarrow limits
- Also limits on extra dimension and effective yyxx coupling

- Add Z' + Higgs coupling to simplified model
- Searches for a ~125 GeV bump in m_{ii}/m_J distributions, divided by N_{bjets}
- Background estimated by simultaneous fitting control regions
 - m_{jj}/m_J sidebands constrain Z→vv+jets
 - one-muon CR to constrain W+jets and ttbar
 - two-lepton CR to constrain Z+jets

MET+H(→bb) Results

• No signal seen \rightarrow limits

MET+H(→bb) Results

• No signal seen \rightarrow limits

Dijet $\frac{|y_1 - y_2|}{2} < 0.6$ y* : > 50 GeV > 440 GeV Events 10⁵ 10⁴

• Search for bump on smooth m_{ii} spectrum

EXOT-2015-02

 QCD background modeled with a falling function

$$p_0(1-x)^{p_1}x^{p_2}, x = \frac{m_{jj}}{\sqrt{s}}$$

A non-resonnant version also available

Dijet Results

- No signal seen \rightarrow limits
- Also set limits on excited quarks, QBH, W' and Gaussian signals

Summary

Summary

20 PHENO2016

Conclusion

- Rich program of Dark Matter searches in ATLAS
 - Shown: MET+jet, MET+photon, MET+higgs, dijet
 - Not shown: MET+V, MET+heavy flavour, MET+($h \rightarrow \gamma\gamma$), MET+h($\rightarrow ZZ$)
- Now unified with a standard simplified model
 - Can cover almost entire mediator/DM mass plane
- Almost excluded g_{SM}=0.25, g_{DM}=1
 - Light DM ~<200 GeV mostly excluded
 - Heavy mediators > 1 TeV excluded
- Smaller couplings still open

BACKUP SLIDES

Other MET+Jet Limits

Other MET+Photon Limits

Other Dijet Limits

Bullet Cluster: http://apod.nasa.gov/apod/ap060824.html Gravitational Lensing: http://apod.nasa.gov/apod/ap060524.html Rotational Curves: Rubin, Ford, and Thonnard (1978), Ap. J. Lett., 225, L107.

Universe Composition: https://darkmatterdarkenergy.com/2015/03/07/planck-mission-full-re sults-confirm-canonical-cosmology-model/

