

Mohammad "Mo" Abdullah Based on 1510.06089 with Jonathan Feng and 1606.xxxx ± 0001.0000 with Jonathan Feng, Sho Iwamoto and Benjamin Lillard

> Phenomenology Symposium University of Pittsburg May 10, 2016

Credit: KEK

Perks:

- Solves the hierarchy problem
- Improves gauge coupling unification
- Provides a natural dark matter candidate

Credit: KEK

Perks:

- Solves the hierarchy problem
- Improves gauge coupling unification
- Provides a natural dark matter candidate

Problems:

Perks:

- Solves the hierarchy problem
- Improves gauge coupling unification
- Provides a natural dark matter candidate

Problems:

- The Higgs mass is too large

Credit: KEK

Perks:

- Solves the hierarchy problem
- Improves gauge coupling unification
- Provides a natural dark matter candidate

Problems:

- The Higgs mass is too large
- Dark matter candidates are rather constrained

Credit: KEK

Perks:

- Solves the hierarchy problem
- Improves gauge coupling unification
- Provides a natural dark matter candidate

Problems:

- The Higgs mass is too large
- Dark matter candidates are rather constrained
- Binos need to be lighter than 300 GeV
- Such masses are disfavored

Credit: KEK

Would be nice to:

Increase the Higgs mass without too much fine tuning

Extend the parameter space of Bino dark matter

$ \begin{array}{c} \left(\begin{array}{c} 1 \\ 1 \\ \end{array} \right) \left(\begin{array}{c} 2 \\ \end{array} \right) \left(\begin{array}{c} 2 \\ \end{array} \right) \left(\begin{array}{c} 1 \\ \end{array} \right) \left(\begin{array}{c} 2 \\ \end{array} \right) \left(\begin{array}{c} 1 \\ \end{array} \right) \left(\begin{array}{c} 2 \\$	$ \begin{array}{c} \hline \\ \hline $		$ \begin{array}{c} \overbrace{}^{\circ} \\ \overbrace{}^{\circ} \\ \overbrace{}^{\circ} \\ \overbrace{}^{\circ} \\ s = 1/2 \\ \overbrace{}^{\circ} \\ \overbrace{}}^{\circ} \\ \overbrace{}^{\circ} } \\ \overbrace{}^{\circ} } \\ \overbrace{}^{\circ} } \\ \overbrace{}^{\circ} } \\ \overbrace{}^{\circ} \\ \overbrace{} } \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \phantom$
s = 1/2 (MOS Existing particles	$\bigcup_{S=0}^{H}$	s = 0 SUSY particles (MSSM	$\mathbf{H}_{s=1/2}$ model)

Would be nice to:

Increase the Higgs mass will less *unnaturalness*

Extend the parameter space of Bino dark matter

Done! ? 4th ^{Vector, ike} Generation^{ike}

• To preserve gauge coupling unification, new fields must be added in full **SU(5)** multiplets: **1**, **5**, or **10**

- To preserve gauge coupling unification, new fields must be added in full **SU(5)** multiplets: **1**, **5**, or **10**
- Perturbativity up to the unification scale restricts us to either a single 10 or up to three 5's (and any 1's) S. Martin arXiv: 0910.2732

- To preserve gauge coupling unification, new fields must be added in full **SU(5)** multiplets: **1**, **5**, or **10**
- Perturbativity up to the unification scale restricts us to either a single 10 or up to three 5's (and any 1's) S. Martin arXiv: 0910.2732
- Increasing the Higgs mass is difficult using **5**'s

The QUE Model

Dirac fermions: T_4, B_4, t_4, τ_4

Complex scalars: $\tilde{T}_{4L}, \tilde{T}_{4R}, \tilde{B}_{4L}, \tilde{B}_{4R}, \tilde{t}_{4L}, \tilde{t}_{4R}, \tilde{\tau}_{4L}, \tilde{\tau}_{4R}, \tilde{\tau$

The QUE Model

Dirac fermions: Complex scalars: T_4, B_4, t_4, τ_4 $\tilde{T}_{4L}, \tilde{T}_{4R}, \tilde{B}_{4L}, \tilde{B}_{4R}, \tilde{t}_{4L}, \tilde{t}_{4R}, \tilde{\tau}_{4L}, \tilde{\tau}_{4R}$ **SU(2) Doublets**

The QUE Model

The QUE Model

Dirac fermions: T_4, B_4, t_4, τ_4 **SU(2) Singlets** Complex scalars: $\tilde{T}_{4L}, \tilde{T}_{4R}, \tilde{B}_{4L}, \tilde{B}_{4R}, \tilde{t}_{4L}, \tilde{t}_{4R}, \tilde{\tau}_{4L}, \tilde{\tau}_{4R}$ SU(2) Doublets

actually we also have Not an SU(5) multiplet The QDEE Model

Dirac fermions: Complex scalars:

 $T_4, B_4, \underline{b_4}, \underline{\tau_4}, \underline{\tau_5} \qquad \textbf{SU(2) Singlets} \\ \tilde{T}_{4L}, \tilde{T}_{4R}, \tilde{B}_{4L}, \tilde{B}_{4R}, \tilde{b}_{4L}, \tilde{b}_{4R}, \tilde{\tau}_{4L}, \tilde{\tau}_{4R}, \tilde{\tau}_{5L}, \tilde{\tau}_{5R}$ **Doublets**

The QUE Model

Minimize number of physical masses

 $m_{ ilde{q}_4} \equiv m_{ ilde{T}_{4L}} = m_{ ilde{T}_{4R}} = m_{ ilde{B}_{4L}} = m_{ ilde{B}_{4R}} = m_{ ilde{t}_{4L}} = m_{ ilde{t}_{4R}}$ $m_{ ilde{\ell}_4}~\equiv~m_{ ilde{ au}_{4L}}=m_{ ilde{ au}_{4R}}$ $m_{q_4} \equiv m_{T_4} = m_{B_4} = m_{t_4}$ $m_{\ell_A} \equiv m_{ au_A}$.

$$\begin{split} a \ &= \ \frac{g_Y^4 Y_V^4}{32\pi} \frac{m_f^2}{m_{\tilde{B}}} \frac{\sqrt{m_{\tilde{B}}^2 - m_f^2}}{\left(m_{\tilde{B}}^2 + m_{\tilde{f}}^2 - m_f^2\right)^2} \\ b \ &= \ \frac{g_Y^4 Y_V^4}{128\pi} \frac{1}{m_{\tilde{B}}} \frac{1}{\sqrt{m_{\tilde{B}}^2 - m_f^2} \left(m_{\tilde{B}}^2 + m_{\tilde{f}}^2 - m_f^2\right)^4} \left[17m_f^8 - 2m_f^6 \left(17m_{\tilde{f}}^2 + 20m_{\tilde{B}}^2\right) \right. \\ &+ m_f^4 \left(86m_{\tilde{B}}^2 m_{\tilde{f}}^2 + 17m_{\tilde{f}}^4 + 37m_{\tilde{B}}^4 \right) \\ &- 2m_f^2 \left(26m_{\tilde{B}}^4 m_{\tilde{f}}^2 + 11m_{\tilde{B}}^2 m_{\tilde{f}}^4 + 11m_{\tilde{B}}^6 \right) + 8m_{\tilde{B}}^4 \left(m_{\tilde{f}}^4 + m_{\tilde{B}}^4\right) \right] \ . \end{split}$$

Relic Density Contours QUE Model $m_{\tilde{B}} = 1.2 m_{\ell_4}$

Higgs Mass

How do we test this?

Collider Searches Assuming tau mixings only

- Long Lived Charged Particle Searches:
 - Applicable for small mixings $\epsilon \lesssim 10^{-8}$
 - We use limits from:
 - ATLAS; 8 TeV, 19.8 fb⁻¹
 - CMS; 7 TeV, 5 fb⁻¹; 8 TeV, 18.8 fb⁻¹

 $m_{\ell_4} > 574$ & $m_{\tilde{\ell}_4} > 410 \, {\rm GeV}$

- Vector-Like Lepton Searches:
 - We adapt the analysis of N. Kumar and S. Martin 1510.03456
 - 13 TeV, 3000 fb⁻¹

 m_{ℓ_4} > 234 GeV

Direct Detection Spin-Dependent

microOMEGAs

Direct Detection

Spin-Independent

microOMEGAs

Indirect Detection W+Z+h Channels

Indirect Detection Tau Channel

Conclusion

- By supplementing the MSSM with 4th generation vector-like copies of Standard Model fermions we can:
 - Achieve the correct Higgs mass with less fine-tuning
 - Extend the mass range of allowed Bino bark matter
 - Preserve gauge coupling unification
- The number of such allowed models is heavily reduced by the requirement of gauge coupling unification
- The whole parameter space will (hopefully) be explored by future experiments

BACK UP

A Detour

The p-wave velocity expansion can give **inaccurate**, and even **negative** results when the Bino and Fermion are very **mass degenerate**

Relic Density Bands QDEE Model $\Omega_{\tilde{B}} = 0.12 \pm 0.012$

Relic Density Contours QDEE Model $m_{\tilde{B}} = 1.2 m_{\ell_4}$

Higgs Mass

2-loop mass in the MSSM without mixing

$$m_h^2 = M_Z^2 \cos^2 2\beta \left(1 - \frac{3}{8\pi^2} \frac{m_t^2}{v^2} t \right) + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left[t + \frac{1}{16\pi^2} \left(\frac{3}{2} \frac{m_t^2}{v^2} - 32\pi\alpha_3 \right) t^2 \right]$$

Can only go up to 115 GeV M_z^2

1-loop correction from 4th generation quarks-squarks

$$\Delta m_h^2 = rac{v^2}{4\pi^2} (k \sin eta)^4 f(x)$$

 $f(x) = \ln x - rac{1}{6} \left(5 - rac{1}{x}
ight) \left(1 - rac{1}{x}
ight)$
 $x = rac{m_{ ilde{q}_4}}{m_{ ilde{q}_4}}$

Depends only on the hierarchy, not the absolute masses

$$\begin{split} t &= \ln \frac{M_{\tilde{t}}^2}{M_t^2} \\ m_t &= \frac{M_t}{1 + \frac{4}{3\pi} \alpha_3(M_t)} \\ \alpha_3 &= \frac{\alpha_3(M_Z)}{1 + \frac{b_3}{4\pi} \alpha_3(M_Z) \ln(M_t^2/M_Z^2)} \\ b_3 &= 11 - 2N_f/3 = 7 \end{split}$$