
New developments in 
Perturbative QCD

Ciaran Williams (SUNY Buffalo) 

1Pheno 2016



New developments in 
Perturbative QCD

Ciaran Williams (SUNY Buffalo) 

1Pheno 2016

A very biased overview of

(fixed order)



2

Going into Run II….

Studying the Higgs boson in 
ever greater detail will be one 
of the cornerstones of Run II. 

Already with Run 1 data the 
theoretical uncertainties 
form a large part of the total 
systematic uncertainty. 

This sets the challenge to the 
precision community. 


Can we provide predictions 
accurate enough to get the 
most out of the fantastic 
LHC data?
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A remarkable achievement

LO LO+LL NLO NLO+NLL NNLO

NNLO+NNLL N3LO N3LO+N3LL
0.5 1.0 1.5 2.0

0

10

20

30

40

50

μ/mH (μ=μR=μF)

σ(
pb

)

Figure 11: Scale variation with µ = µR = µF at all perturbative orders through N3LO within
Setup 1, resummed at the corresponding logarithmic accuracy. The fixed-order cross-sections are
shown for comparison.

schemes that formally agree in the limit N ! 1, but that di↵er by terms that are sup-

pressed by 1/N . In particular, we may change the exponent in eq. (4.7) to GH(as, L(N)),

where L(N) is any function on Mellin space such that L(N) = logN + O(1/N). In the

remainder of this section we study the impact on the Higgs cross-section of di↵erent choices

for L(N) that have been considered in the literature (see, e.g., ref. [36]):

1. (PSI): L(N) =  (N), where  (N) = d
dN log�(N) denotes the digamma function.

This choice is motivated by the fact that the threshold logarithms appear as  (N)

in the Mellin transform of the soft-virtual partonic cross-section and that the Mellin

transform of the partonic cross-section is supposed to exhibit poles in Mellin space

rather than branch cuts.

2. (AP2): A di↵erent resummation scheme can be obtained by exponentiating the Mellin

transform of the Altarelli-Parisi splitting kernel. In particular, the function L(N) ⌘
AP2[logN ] = 2 logN � 3 log(N + 1) + 2 log(N + 2) allows one to exponentiate the

first two subleading terms as z ! 1 coming from the Altarelli-Parisi splitting function

P (0)
gg (z).

3. (PSI+AP2): Combining the two previous variants, we obtain a new variant, corre-

sponding to L(N) ⌘ AP2[ (N)] = 2 (N)� 3 (N + 1) + 2 (N + 2).
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Abstract: We present the most precise value for the Higgs boson cross-section in the

gluon-fusion production mode at the LHC. Our result is based on a perturbative expansion

through N3LO in QCD, in an e↵ective theory where the top-quark is assumed to be in-

finitely heavy, while all other Standard Model quarks are massless. We combine this result

with QCD corrections to the cross-section where all finite quark-mass e↵ects are included

exactly through NLO. In addition, electroweak corrections and the first corrections in the

inverse mass of the top-quark are incorporated at three loops. We also investigate the

e↵ects of threshold resummation, both in the traditional QCD framework and following a

SCET approach, which resums a class of ⇡2 contributions to all orders. We assess the uncer-

tainty of the cross-section from missing higher-order corrections due to both perturbative

QCD e↵ects beyond N3LO and unknown mixed QCD-electroweak e↵ects. In addition, we

determine the sensitivity of the cross-section to the choice of parton distribution function

(PDF) sets and to the parametric uncertainty in the strong coupling constant and quark

masses. For a Higgs mass of mH = 125 GeV and an LHC center-of-mass energy of 13 TeV,

our best prediction for the gluon fusion cross-section is

� = 48.58 pb+2.22 pb (+4.56%)
�3.27 pb (�6.72%) (theory)± 1.56 pb (3.20%) (PDF+↵s)
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(Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger 16)  

Inclusive Higgs cross section now known to N3LO!
(Anastasiou, Duhr, Dulat, Herzog, Mistlberger 15)  

Probably!
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The differential Higgs boson

A key advantage of the LHC 
Run II will be the ability to 
study the Higgs boson 
differentially. 

The N3LO cross section will 
help with overall 
normalization. But we need 
differential predictions to 
search for the impact of 
small effects (like EFT 
corrections to the SM for 
instance) 
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Searches for new physics

For searches which involve subtle 
shape changes w.r.t. SM 
backgrounds it is crucial we 
understand the SM shape (often in 
challenging regions of phase 
space)

15
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Fig. 6 Measured distributions of (a) the jet multiplicity, (b) Emiss
T , (c) leading jet pT, and (d) the leading jet pT to Emiss

T
ratio for the SR1 selection compared to the SM expectations. The Z(→ νν̄)+jets contribution is shown as constrained by
the W (→ µν)+jets control sample. Where appropriate, the last bin of the distribution includes overflows. For illustration
purposes, the distribution of different ADD, WIMP and GMSB scenarios are included. The error bands in the ratios shown
in lower panels include both the statistical and systematic uncertainties on the background expectations.

8.1 Large extra spatial dimensions

The results are translated into limits on the parameters of the ADD model. The typical A×ϵ of the selection
criteria vary, as the number of extra dimensions n increases from n = 2 to n = 6, between 23% and 33% for
SR1 and between 0.3% and 1.4% for SR9, and are approximately independent of MD.

The experimental uncertainties related to the jet and Emiss
T scales and resolutions introduce, when

combined, uncertainties in the signal yields which vary between 2% and 0.7% for SR1 and between 8%
and 5% for SR9, with increasing n. The uncertainties on the proton beam energy result in uncertainties on
the signal cross sections which vary between 2% and 5% with increasing n, and uncertainties on the signal
acceptance of about 1% for SR1 and 3%–4% for SR9. The uncertainties related to the modelling of the
initial- and final-state gluon radiation translate into uncertainties on the ADD signal acceptance which vary
with increasing n between 2% and 3% in SR1 and between 11% and 21% in SR9. The uncertainties due to
PDF, affecting both the predicted signal cross section and the signal acceptance, result in uncertainties on
the signal yields which vary with increasing n between 18% and 30% for SR1 and between 35% and 41% for
SR9. For the SR1 selection, the uncertainty on the signal acceptance itself is about 8%–9%, and increases
to about 30% for the SR9 selection. Similarly, the variations of the renormalization and factorization scales
introduce a 9% to 30% change in the signal acceptance and a 22% to 40% uncertainty on the signal yields
with increasing n and Emiss

T requirements.
The signal region SR7 provides the most stringent expected limits and is used to obtain the final results.

Figure 8 shows, for the SR7 selection, the ADD σ × A × ϵ as a function of MD for n = 2, n = 4, and
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Perturbative predictions for the LHC Run II

LO : Ballpark.  eg  “Pheno is in the 
United States” 
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Figure 11: Scale variation with µ = µR = µF at all perturbative orders through N3LO within
Setup 1, resummed at the corresponding logarithmic accuracy. The fixed-order cross-sections are
shown for comparison.

schemes that formally agree in the limit N ! 1, but that di↵er by terms that are sup-

pressed by 1/N . In particular, we may change the exponent in eq. (4.7) to GH(as, L(N)),

where L(N) is any function on Mellin space such that L(N) = logN + O(1/N). In the

remainder of this section we study the impact on the Higgs cross-section of di↵erent choices

for L(N) that have been considered in the literature (see, e.g., ref. [36]):

1. (PSI): L(N) =  (N), where  (N) = d
dN log�(N) denotes the digamma function.

This choice is motivated by the fact that the threshold logarithms appear as  (N)

in the Mellin transform of the soft-virtual partonic cross-section and that the Mellin

transform of the partonic cross-section is supposed to exhibit poles in Mellin space

rather than branch cuts.

2. (AP2): A di↵erent resummation scheme can be obtained by exponentiating the Mellin

transform of the Altarelli-Parisi splitting kernel. In particular, the function L(N) ⌘
AP2[logN ] = 2 logN � 3 log(N + 1) + 2 log(N + 2) allows one to exponentiate the

first two subleading terms as z ! 1 coming from the Altarelli-Parisi splitting function

P (0)
gg (z).

3. (PSI+AP2): Combining the two previous variants, we obtain a new variant, corre-

sponding to L(N) ⌘ AP2[ (N)] = 2 (N)� 3 (N + 1) + 2 (N + 2).

– 22 –
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Perturbative predictions for the LHC Run II

NLO : Approximate normalization but limited uncertainty estimate 
 eg  “Pheno is in PA (I think)” 
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Figure 11: Scale variation with µ = µR = µF at all perturbative orders through N3LO within
Setup 1, resummed at the corresponding logarithmic accuracy. The fixed-order cross-sections are
shown for comparison.

schemes that formally agree in the limit N ! 1, but that di↵er by terms that are sup-

pressed by 1/N . In particular, we may change the exponent in eq. (4.7) to GH(as, L(N)),
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remainder of this section we study the impact on the Higgs cross-section of di↵erent choices
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1. (PSI): L(N) =  (N), where  (N) = d
dN log�(N) denotes the digamma function.

This choice is motivated by the fact that the threshold logarithms appear as  (N)

in the Mellin transform of the soft-virtual partonic cross-section and that the Mellin

transform of the partonic cross-section is supposed to exhibit poles in Mellin space

rather than branch cuts.

2. (AP2): A di↵erent resummation scheme can be obtained by exponentiating the Mellin
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– 22 –
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NNLO :  Accurate rate and uncertainty estimate eg  “Pheno is in Pittsburgh” 

Perturbative predictions for the LHC Run II
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Figure 11: Scale variation with µ = µR = µF at all perturbative orders through N3LO within
Setup 1, resummed at the corresponding logarithmic accuracy. The fixed-order cross-sections are
shown for comparison.

schemes that formally agree in the limit N ! 1, but that di↵er by terms that are sup-
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2. (AP2): A di↵erent resummation scheme can be obtained by exponentiating the Mellin

transform of the Altarelli-Parisi splitting kernel. In particular, the function L(N) ⌘
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N3LO is like Street view (scary!) 

NNLO is what we need to make precise measurements and dig out subtle 
signals of new physics (EFTs, wide resonances with lots of MET etc…) 
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Next to Next to Leading Order Calculations

�NLO =

Z
|MV V |2dm�+

Z
|MRV |2dm+1�+

Z
|MRR|2dm+2�

At NNLO we have three types of final state phase spaces 
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Next to Next to Leading Order Calculations

�NLO =

Z
|MV V |2dm�+

Z
|MRV |2dm+1�+

Z
|MRR|2dm+2�

At NNLO we have three types of final state phase spaces 

Two-loop double virtual one-loop squared double virtual 



10

Next to Next to Leading Order Calculations

�NLO =

Z
|MV V |2dm�+

Z
|MRV |2dm+1�+

Z
|MRR|2dm+2�

At NNLO we have three types of final state phase spaces 

Real-virtual (one-loop +1 x 
real + 1) 
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Next to Next to Leading Order Calculations

�NLO =

Z
|MV V |2dm�+

Z
|MRV |2dm+1�+

Z
|MRR|2dm+2�

At NNLO we have three types of final state phase spaces 

Real-real 
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✓ ! 0

Infrared divergences

All of our contributions (VV, RV, RR) are divergent, of particular menace 
are the Infra Red poles. 

There are two types of IR pole in real matrix element, 

q ! 0

Soft  (particle momenta 
vanishes)

Collinear (angle between two 
massless particles vanishes)

At NNLO there are many ways to lose two partons, (double soft, 
triple collinear etc etc….) 
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Phase space slicing

A “simple” way of dealing with the singularities is phase space slicing 
(Giele Glover 92)
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Phase space slicing

A “simple” way of dealing with the singularities is phase space slicing 
(Giele Glover 92)

Collinear
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Phase space slicing

A “simple” way of dealing with the singularities is phase space slicing 
(Giele Glover 92)

Collinear
Soft
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Phase space slicing

���� ���� ���� ���� ���� ���� �-���

-���
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σ
[��

]

In these regions both the phase space and 
the matrix element can be approximated by 
known IR factorization e.g. Z

si1<smin

|MR|2d�R ⇡
Z

Pij(z)|MLO|2d�Cd�LO +O(smin)

This can be integrated analytically and combined with the virtual to 
cancel the poles

approx R+V

 real > smin  
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Phase space slicing
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In these regions both the phase space and 
the matrix element can be approximated by 
known IR factorization e.g. Z

si1<smin

|MR|2d�R ⇡
Z

Pij(z)|MLO|2d�Cd�LO +O(smin)

This can be integrated analytically and combined with the virtual to 
cancel the poles

approx R+V

 real > smin  

NEED A SIMILAR FACTORIZATION 

THEOREM TO SEPARATE DOUBLY 

UNRESOLVED FROM SINGLY UNRESOLVED 

LIMITS AT NNLO!   
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N jettiness slicing 

The idea is to use the event shape variable N-jettiness (Stewart, 
Tackmann, Waalewijn 09) to separate the phase space into two regions 
(Boughezal, Liu, Petreillo 15’, Gaunt, Stahlhofen, Tackmann Walsh 15) which 
separates the doubly-from singly unresolved regions. 


Small N-jettiness, use 
factorization theorem. 

Doubly unresolved Singly  unresolved
“Large” N-jettiness, is an NLO 
calculation. Can use existing 
tools, like MCFM 
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SCET factorization 

We need to understand the below cut region for the method to be 
applied. Happily, a factorization theorem (Stewart, Tackmann, Waalewijn 09), 
based upon SCET has been derived 

�(⌧N < ⌧ cutN ) =

Z
H ⌦B ⌦B ⌦ S ⌦

"
NY

n

Jn

#
+O(⌧ cutN )

B@NNLO : Gaunt, Stahlhofen, Tackmann (14) …


S@NNLO : Boughezal, Liu, Petreillo (15)  ….


J@NNLO : Becher, Neubert (06), Becher, Bell (11) ….
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SCET factorization 

We need to understand the below cut region for the method to be 
applied. Happily, a factorization theorem (Stewart, Tackmann, Waalewijn 09), 
based upon SCET has been derived 

�(⌧N < ⌧ cutN ) =

Z
H ⌦B ⌦B ⌦ S ⌦

"
NY

n

Jn

#
+O(⌧ cutN )

Hard function, includes 2-loop virtual

Beam functions, describes radiation 
collinear to initial state 

Soft function, describes soft radiation 

Jet functions, describes radiation 
collinear to final state jets

B@NNLO : Gaunt, Stahlhofen, Tackmann (14) …


S@NNLO : Boughezal, Liu, Petreillo (15)  ….


J@NNLO : Becher, Neubert (06), Becher, Bell (11) ….
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LHC Pheno with N-jettiness slicing
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W + jet

5

Figure 3: The transverse momentum spectrum of the W -
boson at LO, NLO and NNLO in perturbation theory. The
bands indicate the estimated theoretical error. The lower in-
set shows the ratios of the NLO over the LO cross section,
and the NNLO over the NLO cross section. Both shaded
regions in the upper panel and the lower inset indicate the
scale-variation errors. The dashed and solid black lines in the
lower inset respectively show the distribution for T cut

1 = 0.05
GeV and T cut

1 = 0.07 GeV, for the scale choice µ = 2MW .

sented here is only the first of many results obtained with
this novel technique.
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Refs. [10, 20]. The determination of the pi is insen-
sitive to the choice of jet algorithm in the small-
T cut
N limit [10].

• Calculate TN according to Eq. (1). If TN > T cut
N ,

keep the event. Events satisfying this criterion form
the NLO cross section for the N + 1-jet process
�NNLO(TN > T cut

N ) needed in Eq. (2). This NLO
cross section can be obtained using any standard
technique or code. If TN < T cut

N , reject the event.

• Obtain the cross section �(TN < T cut
N ) by expand-

ing the resummation formulae of Eq. (3) to NNLO.
We note that this fully accounts for all N -parton
contributions in Eq. (2), as well as for terms with
additional partons where TN < T cut

N .

VALIDATION OF THE FORMALISM

We next discuss the validation of the TN -subtraction
formalism, in the context of our calculation of W+jet at
NNLO 1. An advantage of our formalism is that it max-
imally reuses known information coming from existing
NLO calculations. Above T cut

N we need a NLO calcula-
tion of W+2-jets, which we obtain from MCFM [21]. For
the terms which contribute below T cut

N , we have checked
our implementation of the two-loop virtual corrections
against those contained in PeTeR [22]. Our calculation
and validation of the necessary N -jettiness soft function
has been detailed in a separate publication [19].

A powerful check of our formalism is that the loga-
rithmic dependence on T cut

N that occurs in the separate
low and high TN regions cancels when they are summed.
We show in Fig. 1 the results of this check. The plot
shows only the O(↵3

s) correction to the cross section as a
function of T cut

N ; we have checked that the O(↵2
s) NLO

cross section obtained with this technique agrees exactly
with the known results. The separate contributions from
the regions TN > T cut

N and TN < T cut
N are shown as well.

These cross sections are obtained using CT10 parton dis-
tribution functions [23], and contain the following fiducial
cuts on the final-state jet from CMS [25]: pjetT > 30 GeV,
|⌘jet| < 2.4. The ATLAS analysis is similar but with
slightly di↵erent cuts [26]. Both the renormalization and
factorization scales have been set to µ = MW and var-
ied from this choice by a factor of two. Over the region
0.06GeV < T cut

N < 0.1GeV, the results from the sepa-
rate regions vary by a few thousand picobarns, but their
sum is stable to better than one picobarn, a size which
represents an 0.1% correction to the total cross section.
The NLO corrections to W+2-jets, have been obtained
using the double precision version of MCFM, both the

1 In the calculation of W+jet at NNLO, N is set to 1 in TN .

single-core version and the new multi-core implementa-
tion [24]. We have checked that for larger values of T cut

N ,
the power corrections in Eq. (3) begin to become impor-
tant. For the numerical results presented in the remain-
der of this paper we use the choices T cut

1 = 0.05, 0.06,
0.07, and 0,08 GeV to cross-check their T cut

N indepen-
dence.

Figure 1: The separate cross sections for the regions T1 >
T cut
1 and T1 < T cut

1 , together with their sum, as a function of
T cut
1 . The solid lines denote the results for the central scale

choice µ = MW , while the bands indicate the corrections in
the range MW /2  µ  2MW .

As a final check of our computation, we have applied
our formalism to calculate the NNLO corrections to Higgs
production in association with a jet, for which partial
results are available [5]. We find agreement with the
fiducial cross section for this process. The details of this
computation, together with phenomenological results for
the LHC, will be presented in a separate manuscript [27].

NUMERICAL RESULTS

We present here first numerical results for W++jet
production at the LHC. We focus on

p
s = 8 TeV col-

lisions, and use CT10 parton distribution functions [23]
at the same order of perturbation theory as the corre-
sponding partonic cross section. Our central scale choice
is µ = MW . To obtain an estimate of the theoretical er-
rors we vary µ away from this choice by a factor of two.
We again impose the following cuts on the final-state jet:
pjetT > 30 GeV, |⌘jet| < 2.4. We reconstruct jets using
the anti-kT algorithm [28] with R = 0.5.
We begin by showing in Table I the total cross section

subject to the above cuts at leading order (LO), NLO,
and NNLO in the strong coupling constant. These num-
bers include the branching fraction for the W -boson to
decay to a single lepton flavor. We note that the nu-
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The first application of the new 
slicing method was to the 
calculation of W+ jet at NNLO. 

Corrections are small, and 
scale variation is very minor 
(especially once the full NNLO 
phase space is obtained)

Can be used for precision 
pheno studies (e.g. BSM 
searches, PDF tests) 
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The primary check of the N -jettiness formalism is that
the logarithmic dependence on T cut

N that occurs sepa-
rately in the low and high TN regions cancels when they
are summed. This requires that almost all parts of the
calculation are implemented correctly and consistently;
the beam, soft, and jet functions, as well as the NLO
corrections to Z+2-jets, are probed by this check. We
show in Fig. 1 the results of this validation for the ra-
tio �NNLO/�NLO in 13 TeV proton-proton collisions. We
have checked that the NLO cross section obtained with
N -jettiness subtraction agrees with the result obtained
with standard techniques. These cross sections are ob-
tained using CT14 parton distribution functions [27] at
the same order in perturbation theory as the partonic
cross section, and contain the following fiducial cuts
on the leading final-state jet and the two leptons from
CMS [5]: pjetT > 30 GeV, |⌘jet| < 2.4, plT > 20 GeV,
|⌘l| < 2.4 and 71GeV < mll < 111GeV. The AT-
LAS analysis is similar but with slightly di↵erent cuts [4].
We reconstruct jets using the anti-kT algorithm [28] with

R = 0.5. A dynamical scale µ0 =
q

m2
ll +

P
pjet,2T is cho-

sen to describe this process, where the sum is over the
transverse momenta of all final-state jets, and mll the
invariant mass of the di-lepton pair arising from the Z-
boson decay. In this validation plot we have set the renor-
malization and factorization scales to µR = µF = 2⇥µ0;
since the corrections are larger for this scale choice, it
is easier to illustrate the important aspects of the T cut

1

variation.

Figure 1: Plot of the NNLO cross section over the NLO result,
�NNLO/�NLO, as a function of T cut

1 , for the scale choice µ =
2 ⇥ µ0. The vertical bars accompanying each point indicate
the integration errors.

A few features can be seen in Fig. 1. First, in the region
T cut
1 < 0.2 GeV the result becomes independent of the

particular value of the cut chosen within the numerical
errors. The NNLO correction for µ = 2⇥µ0 corresponds
to a +3% shift in the cross section. The plot makes clear
that we have numerical control over the NNLO cross sec-
tion to the per-mille level, completely su�cient for phe-
nomenological predictions. We observe an approximately

linear dependence of �NNLO on ln (T cut
1 ) in the region

0.2GeV < T cut
1 < 0.5GeV, indicating the onset of the

power corrections neglected in Eq. (3). These power cor-
rections have the form (TN/Q) lnn(TN/Q), where n  3
at NNLO [8] and Q is a hard scale such as pjetT .
The other possible checks of the N -jettiness formalism

involve comparison with other NNLO results obtained us-
ing di↵erent techniques. We have previously checked that
the agreement between Higgs+jet production as com-
puted with N -jettiness and with other techniques [10]
agree at the per-mille level [9]. A selection of processes
without final-state jets have also been computed with
both N -jettiness subtraction and other techniques, and
show a similar level of agreement [8, 14].

NUMERICAL RESULTS

We present here numerical results for Z-boson produc-
tion in association with a jet at NNLO. Our central scale
choice is the dynamical scale µ = µ0, as described in the
previous section. To obtain an estimate of the theoret-
ical errors we vary µ away from this choice by a factor
of two. We use the same cuts on the jets and leptons as
described in the previous section. We include the con-
tributions from both the Z-boson and a virtual photon
decaying to leptons in our numerical results.

Figure 2: Plot of the Z-boson pT distribution at LO, NLO
and NNLO in QCD perturbation theory, for 13 TeV collisions

with the central scale µ0 =
q

m2
ll +

P
pjet,2T . The K-factors

are shown in the lower inset.

We note that the cross sections at each order in per-
turbation theory for the cuts described above are:

�LO = 97.4+3.9
�4.4 pb,

�NLO = 133.3+5.4
�4.2 pb,

�NNLO = 134.2+0.0
�0.6 pb.

(4)

3

The primary check of the N -jettiness formalism is that
the logarithmic dependence on T cut

N that occurs sepa-
rately in the low and high TN regions cancels when they
are summed. This requires that almost all parts of the
calculation are implemented correctly and consistently;
the beam, soft, and jet functions, as well as the NLO
corrections to Z+2-jets, are probed by this check. We
show in Fig. 1 the results of this validation for the ra-
tio �NNLO/�NLO in 13 TeV proton-proton collisions. We
have checked that the NLO cross section obtained with
N -jettiness subtraction agrees with the result obtained
with standard techniques. These cross sections are ob-
tained using CT14 parton distribution functions [27] at
the same order in perturbation theory as the partonic
cross section, and contain the following fiducial cuts
on the leading final-state jet and the two leptons from
CMS [5]: pjetT > 30 GeV, |⌘jet| < 2.4, plT > 20 GeV,
|⌘l| < 2.4 and 71GeV < mll < 111GeV. The AT-
LAS analysis is similar but with slightly di↵erent cuts [4].
We reconstruct jets using the anti-kT algorithm [28] with

R = 0.5. A dynamical scale µ0 =
q

m2
ll +

P
pjet,2T is cho-

sen to describe this process, where the sum is over the
transverse momenta of all final-state jets, and mll the
invariant mass of the di-lepton pair arising from the Z-
boson decay. In this validation plot we have set the renor-
malization and factorization scales to µR = µF = 2⇥µ0;
since the corrections are larger for this scale choice, it
is easier to illustrate the important aspects of the T cut

1

variation.

Figure 1: Plot of the NNLO cross section over the NLO result,
�NNLO/�NLO, as a function of T cut

1 , for the scale choice µ =
2 ⇥ µ0. The vertical bars accompanying each point indicate
the integration errors.

A few features can be seen in Fig. 1. First, in the region
T cut
1 < 0.2 GeV the result becomes independent of the

particular value of the cut chosen within the numerical
errors. The NNLO correction for µ = 2⇥µ0 corresponds
to a +3% shift in the cross section. The plot makes clear
that we have numerical control over the NNLO cross sec-
tion to the per-mille level, completely su�cient for phe-
nomenological predictions. We observe an approximately

linear dependence of �NNLO on ln (T cut
1 ) in the region

0.2GeV < T cut
1 < 0.5GeV, indicating the onset of the

power corrections neglected in Eq. (3). These power cor-
rections have the form (TN/Q) lnn(TN/Q), where n  3
at NNLO [8] and Q is a hard scale such as pjetT .
The other possible checks of the N -jettiness formalism

involve comparison with other NNLO results obtained us-
ing di↵erent techniques. We have previously checked that
the agreement between Higgs+jet production as com-
puted with N -jettiness and with other techniques [10]
agree at the per-mille level [9]. A selection of processes
without final-state jets have also been computed with
both N -jettiness subtraction and other techniques, and
show a similar level of agreement [8, 14].

NUMERICAL RESULTS

We present here numerical results for Z-boson produc-
tion in association with a jet at NNLO. Our central scale
choice is the dynamical scale µ = µ0, as described in the
previous section. To obtain an estimate of the theoret-
ical errors we vary µ away from this choice by a factor
of two. We use the same cuts on the jets and leptons as
described in the previous section. We include the con-
tributions from both the Z-boson and a virtual photon
decaying to leptons in our numerical results.

Figure 2: Plot of the Z-boson pT distribution at LO, NLO
and NNLO in QCD perturbation theory, for 13 TeV collisions

with the central scale µ0 =
q

m2
ll +

P
pjet,2T . The K-factors

are shown in the lower inset.

We note that the cross sections at each order in per-
turbation theory for the cuts described above are:

�LO = 97.4+3.9
�4.4 pb,

�NLO = 133.3+5.4
�4.2 pb,

�NNLO = 134.2+0.0
�0.6 pb.

(4)

Boughezal,  Campbell,  Ellis, Focke,  Giele, Liu, Petriello 16

A related calculation is that of Z
+jet at NNLO.

Again corrections are not 
huge, but allow for a precision 
prediction in the context of the 
SM. 

This will allow us to have smaller 
uncertainties on the shape of the 
MET+jet spectrum => Better DM 
limits in run II (and SUSY) 
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Figure 3: The transverse momentum of the leading jet at LO,
NLO, and NNLO in the strong coupling constant. The lower
inset shows the ratios of NLO over LO cross sections, and
NNLO over NLO cross sections. Both shaded regions in the
upper panel and the lower inset indicate the scale-variation
errors.

Figure 4: The transverse momentum of the Higgs boson at
LO, NLO, and NNLO in the strong coupling constant. The
lower inset shows the ratios of NLO over LO cross sections,
and NNLO over NLO cross sections. Both shaded regions
in the upper panel and the lower inset indicate the scale-
variation errors.

CONCLUSIONS

We have presented in this manuscript a complete cal-
culation of Higgs production in association with a jet
through NNLO in perturbative QCD. Our computation
uses the recently proposed method of jettiness subtrac-
tion, a general technique for obtaining higher-order cor-
rections to processes containing final-state jets. We con-
firm and extend a recent calculation of the dominant

gg and qg partonic channels through NNLO [11], and
present additional phenomenological results for 8 TeV
LHC collisions. We also present several distributions for
the Higgs and the leading jet that can be measured with
LHC data. Our results indicate that the perturbative se-
ries is under good control after the inclusion of the NNLO
corrections. We look forward to the comparison of our
theoretical prediction with the upcoming data from Run
II of the LHC.

ACKNOWLEDGEMENTS

R. B. is supported by the DOE contract DE-AC02-
06CH11357. C. F. is supported by the DOE grant DE-
FG02-91ER40684. W. G. is supported by the DOE con-
tract DE-AC02-07CH11359. X. L. is supported by the
DOE. F. P. is supported by the DOE grants DE-FG02-
91ER40684 and DE-AC02-06CH11357. This research
used resources of the National Energy Research Scien-
tific Computing Center, a DOE O�ce of Science User
Facility supported by the O�ce of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.

⇤ Electronic address:rboughezal@anl.gov
† Electronic address:christfried.focke@northwestern.edu
‡ Electronic address:giele@fnal.gov
§ Electronic address:xhliu@umd.edu
¶ Electronic address:f-petriello@northwestern.edu

[1] For recent studies of the Higgs couplings to various
states, see ATLAS-CONF-2015-007; V. Khachatryan et
al. [CMS Collaboration], arXiv:1412.8662 [hep-ex].

[2] R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88,
201801 (2002) [hep-ph/0201206].

[3] C. Anastasiou and K. Melnikov, Nucl. Phys. B 646, 220
(2002) [hep-ph/0207004].

[4] V. Ravindran, J. Smith and W. L. van Neerven, Nucl.
Phys. B 665, 325 (2003) [hep-ph/0302135].

[5] S. Catani, D. de Florian, M. Grazzini and P. Nason,
JHEP 0307, 028 (2003) [hep-ph/0306211].

[6] S. Moch and A. Vogt, Phys. Lett. B 631, 48 (2005) [hep-
ph/0508265].

[7] V. Ahrens, T. Becher, M. Neubert and L. L. Yang, Eur.
Phys. J. C 62, 333 (2009) [arXiv:0809.4283 [hep-ph]].

[8] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and
B. Mistlberger, arXiv:1503.06056 [hep-ph].

[9] M. Bonvini, R. D. Ball, S. Forte, S. Marzani and G. Ri-
dolfi, J. Phys. G 41, 095002 (2014) [arXiv:1404.3204
[hep-ph]].

[10] R. Boughezal, X. Liu, F. Petriello, F. J. Tackmann and
J. R. Walsh, Phys. Rev. D 89, no. 7, 074044 (2014)
[arXiv:1312.4535 [hep-ph]].

[11] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and
M. Schulze, JHEP 1306, 072 (2013) [arXiv:1302.6216
[hep-ph]].

3

Figure 1: The separate cross sections for the regions T1 >
T cut
1 and T1 < T cut

1 , together with their sum, as a function
of T cut

1 , normalized to the NLO cross section. The lower
panel shows the relative correction also with respect to the
NLO cross section. The solid lines denote the result for the
central scale choice µ = mH , while the bands show the result
as the scale as varied in the range mH/2  µ  2mH . The
black dashed lines denote �/�NLO = 1 (upper panel) and
��/�NLO = 0 (lower panel).

We begin by studying the fiducial cross section for
Higgs+jet production, which we define by imposing the
following cuts on the final state jet: pjetT > 30 GeV,
|Y jet| < 2.5. Our results are shown in Table I. We
can compare these results against the calculation of
Ref. [13], which is based on the technique of sector-
improved residue subtraction [30, 31]. The result quoted
in Ref. [13] does not include a cut on |Y jet|, and also
does not include the quark-initiated partonic channels
qq, q̄q, and q̄q̄. Incorporating the |Y jet| cut in the sector-
improved subtraction calculation [32] and removing the
quark-initiated channels from our result, we find agree-
ment within numerical errors. We note that the quark-
initiated partonic channels reduce the NNLO result by
approximately 1.5% within the fiducial region studied
here, indicating that they have small phenomenological
impact.

pjetT > 30 GeV, |Y jet| < 2.5

Leading order: 3.1+1.3
�0.9 pb

Next-to-leading order: 4.8+1.1
�0.9 pb

Next-to-next-to-leading order: 5.5+0.3
�0.4 pb

Table I: Fiducial cross sections, defined by pjetT > 30 GeV,
|Y jet| < 2.5, using NNPDF PDFs at each order of pertur-
bation theory. The central scale choice is µ = mH . Results
for µ = mH/2 and µ = 2mH are shown as superscripts and
subscripts, respectively.

We next show several distributions in Higgs plus jet

production. We show in Fig. 2 the rapidity distribution
of the leading jet at each order in perturbation theory,
as well as the K-factors (defined as ratios of higher-order
cross section over the lower-order ones) in the lower inset.
The NLO corrections exhibit a slight shape dependence,
with the corrections approximately 10-20% larger in the
central region than near |Y jet| = 2.5. The NNLO correc-
tions are flatter as a function of rapidity, and the NNLO
distribution is entirely contained within the NLO scale
variation band. In Fig. 3 we show the transverse momen-
tum distribution of the leading jet. There is a shape de-
pendence to the corrections, with theK-factor decreasing
as pjetT is increased. This trend is visible when going from
LO to NLO in perturbation theory, and also when going
from NLO to NNLO. We note that the NNLO result is
entirely contained within the NLO scale-variation band.
The shape dependence and magnitude of the NNLO cor-
rections for the pjetT distribution are in agreement with
the results of Ref. [13].

Figure 2: The rapidity of the leading jet at LO, NLO, and
NNLO in the strong coupling constant. The lower inset shows
the ratios of NLO over LO cross sections, and NNLO over
NLO cross sections. Both shaded regions in the upper panel
and the lower inset indicate the scale-variation errors.

Finally, we show in Fig. 4 the transverse momentum
of the Higgs boson in the H+jet process. The NLO cor-
rections range from 40% to 120% near pHT = 60 GeV,
depending on the scale choice. The magnitude of this
correction decreases as the transverse momentum of the
Higgs increases. The NNLO corrections are more mild,
reaching only 20% at most for the central scale choice
µ = mH . They also decrease slightly as the transverse
momentum of the Higgs increases. The shape depen-
dence and magnitude of the NNLO corrections for the pHT
distribution are in agreement with the results of Ref. [13].
We note that we have combined the two bins closest to
the boundary pHT = 30 GeV to avoid the well-known Su-
dakov shoulder e↵ect [33].
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A different type of calculation is H
+jet @ NNLO. Here the corrections 
are much larger (both at NLO and 
NNLO).

This new calculation will allow 
for better understanding of the 
differential Higgs boson. 
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VH

At LO and NLO we have topologies which are the same as for single 
vector boson production (Drell-Yan)

Figure 1. Drell-Yan like production modes for the associated production of a Higgs boson. Shown
are representative Feynman diagrams needed to compute the O(↵0

S) (left) and O(↵S) (center and
right) parts of the production cross section.

Figure 2. Drell-Yan like production modes for the associated production of a Higgs boson. Shown
are representative Feynman diagrams needed to compute the O(↵2

S) corrections to the process.
Examples are shown for each of the 0-, 1-, and 2-parton phase space configurations.

d�
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pp!`1`2H

contains singularities of IR origin. In order to regularize these we use the re-
cently developed ⌧ -cutoff prescription [27–29]. This prescription uses the N-jetiness variable
of SCET to define a ⌧ parameter which splits the NNLO calculation into two pieces. Below
the ⌧ -cutoff parameter SCET is used to provide an approximation for the full calculation.
Above the ⌧ -cutoff the calculation is an NLO (V H+ j) process, and can be evaluated using
traditional techniques. Since the SCET formalism below the ⌧ is approximate, the value of
⌧ should be taken as small as is feasibly possible. A check of the implementation is thus
obtained by checking the complete cancellation of the logarithmic pieces above and below
the cut. For our process, which does not contain any final state jets in the Born phase
space, the ⌧ -cutoff prescription is similar to the qT subtraction [30] used in previous calcu-
lations [9]. For more details on the implementation of the regularization scheme in MCFM,
we refer the reader to [? ]. CW my discussion here was probably a bit brief and we

probably need some more references

Therefore in order to implement the DY pieces into MCFM we need the two-loop
virtual amplitude [6] interpreted in terms of the hard function of SCET, and the NLO
implementation of V Hj. The results for the two-loop virtual amplitude are readily available
in the literature, and we have calculated the NLO corrections to V Hj and implemented
them in MCFM, details of the calculation are presented in Appendix ??.
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At NNLO we have extensions to these topologies
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classic form factor calculation  WH1 jet @ NLO
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Figure 3. Production modes for the contributions which are proportional to the top Yukawa
coupling yt for the associated production of a Higgs boson. These type of topologies occur for
either WH or ZH, and interfere with the LO amplitude.

Figure 4. Production modes for the contributions which are proportional to the top Yukawa
coupling yt for the associated production of a Higgs boson. These type of topologies only occur for
ZH

2.3 Top Yukawa contributions

A new type of process opens up at O(↵2
s) and corresponds to diagrams in which the Higgs

boson does not couple directly to the vector boson, but instead couples to a massive quark.
Since the top-quark has by far the largest Yukawa coupling, these contributions are dom-
inated by the top-quark loops. These yt diagrams further sub-divide into two categories.
The first kind, for which representative diagrams are presented in Fig 3, consist of a closed
loop of heavy quarks which do not radiate the vector boson. The second kind, illustrated in
Fig 4 contain a closed loop of fermions which radiates both the Higgs and the vector boson.
Flavor conservation mandates that the latter examples are forbidden if the radiated boson
is a W . Therefore the first topologies (Fig. 3) occur for both WH and ZH and the latter
topologies occur only for ZH. Both sets of topologies can have two-loop qq topologies,
which interfere with the LO amplitude, and one-loop qqg topologies, which interfere with
the qqgV H tree amplitude. These pieces have been computed for on-shell final state parti-
cles [7] and we follow the nomenclature introduced in their paper. We refer to the two-loop
diagrams as V and the one-loop diagrams as R, the two topologies are distinguished by I

(for those which occur for both WH and ZH) and II (ZH) only. In ref. [7] these pieces
were computed and found to contribute around 1 � 3% of the total NNLO cross section.
Whilst this may appear to be a small (and hence neglectible) contribution, the total NNLO
correction from the DY pieces discussed previously is itself of the same order. Therefore in
order to obtain an reliable prediction at O(↵2

s) it is crucial to include these pieces. Hence
the inclusion of these contributions in a fully flexible Monte Carlo code is one of the primary
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Gluon PDFS will make this bit 
important! 
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Figure 9. The cross-section in femtobarns as a function of the minimum transverse momentum of
the Z boson pZT . The upper panel presents the total cross-section, the middle panel presents the
impact of the higher order corrections, the lower plot presents the total ↵2

S coefficient.

Figure 10. The cross-section in femtobarns as a function of the number of jets (light plus b-jets)
for W+H at 13 TeV. The solid lines represent predictions which include the H ! bb decay at NLO.

jets in the final state, with the (n + 2)-jet bin corresponding to the LO prediction for
V H + n jets. In Fig. 10 we present NLO and NNLO predictions, with NLO (solid) and
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Figure 8. The cross-section in femtobarns as a function of the minimum transverse momentum
of the W+ (left) and W� (right) boson, pWT . The upper panel presents the total cross-section, the
middle panel presents the impact of the higher order corrections, the lower plot presents the DY

and yt ↵
2
S coefficients.

the total cross section as a function of the minimum transverse momentum of the vector
boson in Figs. 8 (WH) and 9 (ZH). We focus on the LHC operating at

p
s = 13 TeV. To

produce these results we apply the basic cuts described above. The results of the previous
figures are also manifest in these plots: the initial impact of higher order corrections for
W�H is slightly larger (at NLO), but the impact of the NNLO corrections is similar for
both charges in W±H. It is also clear that ZH has much larger NNLO corrections than
WH. Particularly rich signal bins in the experimental analysis correspond to pVT > 120 GeV
and pVT > 160 GeV. For these choices the signal cross-section is around 30-40% and 15�20%

of the pVT -inclusive result, respectively. The impact of NLO is a mild enhancement in the
tail of the pVT distribution for all process. For WH production the NNLO corrections
are reasonably flat in pVT , while the NNLO corrections to the ZH process become more
pronounced in the high pVT region. This is due almost exclusively to the yt correction,
which hardens the spectrum as can be clearly seen in the middle panel of Fig. 9.

We now turn our attention to jet-based observables. In Figure 10 we present the cross-
section as a function of the total number of jets (i.e. b-jets plus light jets). The plot on the
left-hand side has only the basic lepton cuts applied, while on the right pVT > 120 GeV is
required in addition to the basic lepton cuts. Since the Higgs boson is a resonance decaying
to massive quarks, a well-defined cross-section can be computed without any requirement
on the number of b-jets present. An NnLO prediction can then have between 0 and (n+2)

– 12 –

Dependence on the recoil of the vector boson

Experimental analysis require fairly hard cuts on vector boson transverse momenta 
to suppress top backgrounds.  

Top loops make up ~30-50% of total NNLO correction (not in previous MC)

NNLO effects are much larger in ZH, due to gg=>ZH loops. 
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Already in Run I pp=>V(H=>WW)=> leptons was an experimentally viable 
channel. In Run II its going to be studied in much greater detail. 

For us the process is particularly interesting, since it provides a great test of N-
jettiness slicing for a  challenging final state phase space. 

The LO phase space is 16 dimensional

Real phase space at NLO is 19 dimensional

Double real phase space is 22 dimensional
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Figure 14. Differential predictions for the transverse mass of the lepton-/ET system for W+H(left)
and ZH (right) production at the 14 TeV LHC.

Figure 15. The cross-section as a function of the number of jets, nj , for W+H (left) and ZH

(right) with H ! WW ⇤ decays at the 14 TeV LHC

Finally in Fig. 15 we present the cross-section as a function of the number of additional
jets, where the basic jet definition is used from the previous section, pjT > 25 GeV and
|⌘j | < 2.5. The nj distribution for these decays are different from those studied previously
in the H ! bb section, since now the jets are only produced through initial state radiation,
with no contamination from jets arising from the decay. For the WH process, around 40%
of the events have one or more jets in the final state. For ZH production the percentage
drops to around 35% due to the presence of the gg ! ZH contribution that only populates

– 18 –

Impact of higher orders in decay

We are able to run the code at NNLO and make distributions!
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Figure 3. Production modes for the contributions which are proportional to the top Yukawa
coupling yt for the associated production of a Higgs boson. These type of topologies occur for
either WH or ZH, and interfere with the LO amplitude.

Figure 4. Production modes for the contributions which are proportional to the top Yukawa
coupling yt for the associated production of a Higgs boson. These type of topologies only occur for
ZH

2.3 Top Yukawa contributions

A new type of process opens up at O(↵2
s) and corresponds to diagrams in which the Higgs

boson does not couple directly to the vector boson, but instead couples to a massive quark.
Since the top-quark has by far the largest Yukawa coupling, these contributions are dom-
inated by the top-quark loops. These yt diagrams further sub-divide into two categories.
The first kind, for which representative diagrams are presented in Fig 3, consist of a closed
loop of heavy quarks which do not radiate the vector boson. The second kind, illustrated in
Fig 4 contain a closed loop of fermions which radiates both the Higgs and the vector boson.
Flavor conservation mandates that the latter examples are forbidden if the radiated boson
is a W . Therefore the first topologies (Fig. 3) occur for both WH and ZH and the latter
topologies occur only for ZH. Both sets of topologies can have two-loop qq topologies,
which interfere with the LO amplitude, and one-loop qqg topologies, which interfere with
the qqgV H tree amplitude. These pieces have been computed for on-shell final state parti-
cles [7] and we follow the nomenclature introduced in their paper. We refer to the two-loop
diagrams as V and the one-loop diagrams as R, the two topologies are distinguished by I

(for those which occur for both WH and ZH) and II (ZH) only. In ref. [7] these pieces
were computed and found to contribute around 1 � 3% of the total NNLO cross section.
Whilst this may appear to be a small (and hence neglectible) contribution, the total NNLO
correction from the DY pieces discussed previously is itself of the same order. Therefore in
order to obtain an reliable prediction at O(↵2

s) it is crucial to include these pieces. Hence
the inclusion of these contributions in a fully flexible Monte Carlo code is one of the primary
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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [48]), real-virtual and real-real
corrections.

calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO +��NLO

�NNLO
�� = �NLO +��NNLO

= �LO +��NLO
+��NNLO (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref [48], and for the real-virtual in [49], tree-level amplitudes for the real-real can
be found in [50].

After UV renormalization the individual component pieces of the calculation still con-
tain copious singularities of infrared (IR) origin. These infrared poles must be regulated
and combined across the different phase spaces in order to ensure that a sensible prediction
is obtained. As discussed in the introduction, we will use the N -jettiness slicing technique
proposed in refs [29, 37] for this task. This results in an above-cut contribution correspond-
ing to the calculation of pp ! ��j at NLO. The below-cut contribution requires 2-loop
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Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

soft [51, 52] and beam [53] functions, together with the process-dependent hard function.
Various component pieces of this calculation, including explicit results for the hard function,
are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg ! ��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
PDFs). On the other hand if the qqg�� amplitudes are included then the corresponding
collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding
implementation in MCFM [46]) the first approach was taken. Here we will follow the second
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�[fb] LO NLO NNLO
µF = µR = m��/2 5045 ± 1 26581 ± 23 45588 ± 97
µF = µR = m�� 5712 ± 2 26402 ± 25 43315 ± 54
µF = µR = 2m�� 6319 ± 2 26045 ± 24 41794 ± 77

Table 1. Cross sections reported in ref. [? ].

pieces always as �NNLO
+ ��N3LO

gg,nF
. Our default scale choice for the renormalization and

factorization scales will be µ = m�� .

3 Validation

In this section we compare our results for pp ! �� with those presented in ref. [? ]. A
summary of cross-sections that have been computed in that work is shown in Table ??.
To emulate their calculation we impose a series of phase space selection cuts. The cuts on
the transverse momenta of the photons depend on their relative size, phardT > 40 GeV and
psoftT > 25 GeV. The photons are also required to be central, |⌘� | < 2.5 and in addition we
require that the invariant mass of the photon-photon system lies in the interval 20  m�� 
250 GeV. Finally at NLO and NNLO we impose the following isolation requirement [? ]

Ehad
T (r)  ✏�p

T
�

✓
1� cos r

1� cosR

◆n

, (3.1)

with n = 1, ✏� = 0.5 and R = 0.4. We use ↵ = 1/137 and the remaining EW parameters
are set to the default values in MCFM. The PDFs are taken from MSTW2008 [? ] and
are matched to the appropriate order in perturbation theory. The renormalization and
factorization scales are mostly set to the invariant mass of the photon pair µF = µF = m�� ,
although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.

Since we therefore do not agree with the essential results of the existing literature we
now describe the further checks that we have performed on our calculation. Several of
the ingredients for the below-cut contribution have been reused from previous calculations
where good agreement with the literature results was obtained. Specifically, the soft and
beam functions have already been used to compute the Drell-Yan and associated Higgs
production processes [? ? ]. The MCFM predictions for these cross sections agree perfectly
with the known results from the literature. The remaining below-cut contribution, the
hard function, has been implemented in two independent codes that check both the SCET
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Aside from the regular

NNLO topologies, there are 
interesting effects from gg 
initiated pieces too. 


gg@NLO was calculated first 
by (Bern, De Freitas Dixon 01), 
(Bern, Dixon, Schmidt 02) 

qq

(Anastasiou, Glover, 
Tejeda-Yeomans 02)  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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [48]), real-virtual and real-real
corrections.

calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO +��NLO

�NNLO
�� = �NLO +��NNLO

= �LO +��NLO
+��NNLO (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref [48], and for the real-virtual in [49], tree-level amplitudes for the real-real can
be found in [50].

After UV renormalization the individual component pieces of the calculation still con-
tain copious singularities of infrared (IR) origin. These infrared poles must be regulated
and combined across the different phase spaces in order to ensure that a sensible prediction
is obtained. As discussed in the introduction, we will use the N -jettiness slicing technique
proposed in refs [29, 37] for this task. This results in an above-cut contribution correspond-
ing to the calculation of pp ! ��j at NLO. The below-cut contribution requires 2-loop
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Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

soft [51, 52] and beam [53] functions, together with the process-dependent hard function.
Various component pieces of this calculation, including explicit results for the hard function,
are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg ! ��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
PDFs). On the other hand if the qqg�� amplitudes are included then the corresponding
collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding
implementation in MCFM [46]) the first approach was taken. Here we will follow the second
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�[fb] LO NLO NNLO
µF = µR = m��/2 5045 ± 1 26581 ± 23 45588 ± 97
µF = µR = m�� 5712 ± 2 26402 ± 25 43315 ± 54
µF = µR = 2m�� 6319 ± 2 26045 ± 24 41794 ± 77

Table 1. Cross sections reported in ref. [? ].

pieces always as �NNLO
+ ��N3LO

gg,nF
. Our default scale choice for the renormalization and

factorization scales will be µ = m�� .

3 Validation

In this section we compare our results for pp ! �� with those presented in ref. [? ]. A
summary of cross-sections that have been computed in that work is shown in Table ??.
To emulate their calculation we impose a series of phase space selection cuts. The cuts on
the transverse momenta of the photons depend on their relative size, phardT > 40 GeV and
psoftT > 25 GeV. The photons are also required to be central, |⌘� | < 2.5 and in addition we
require that the invariant mass of the photon-photon system lies in the interval 20  m�� 
250 GeV. Finally at NLO and NNLO we impose the following isolation requirement [? ]

Ehad
T (r)  ✏�p

T
�

✓
1� cos r

1� cosR

◆n

, (3.1)

with n = 1, ✏� = 0.5 and R = 0.4. We use ↵ = 1/137 and the remaining EW parameters
are set to the default values in MCFM. The PDFs are taken from MSTW2008 [? ] and
are matched to the appropriate order in perturbation theory. The renormalization and
factorization scales are mostly set to the invariant mass of the photon pair µF = µF = m�� ,
although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.

Since we therefore do not agree with the essential results of the existing literature we
now describe the further checks that we have performed on our calculation. Several of
the ingredients for the below-cut contribution have been reused from previous calculations
where good agreement with the literature results was obtained. Specifically, the soft and
beam functions have already been used to compute the Drell-Yan and associated Higgs
production processes [? ? ]. The MCFM predictions for these cross sections agree perfectly
with the known results from the literature. The remaining below-cut contribution, the
hard function, has been implemented in two independent codes that check both the SCET
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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [48]), real-virtual and real-real
corrections.
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evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
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although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.
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where good agreement with the literature results was obtained. Specifically, the soft and
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Cross sections 

Its interesting to compare NNLO with NNLO + gg@NLO, at 7 TeV not 
much to tell between the two predictions and agreement with data. 

At 13 TeV predictions separate, would be interesting to see which is best  
(its non trivial, since we are missing pieces from the N3LO prediction 
which could easily drive the prediction back down). 
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Differential predictions: Invariant masses

Out of the box NNLO does a very nice job of describing CMS 7 TeV Data
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Differential predictions: Invariant masses

Out of the box NNLO does a very nice job of describing CMS 7 TeV Data

Looks like adding in additional gluon pieces helps 
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Differential predictions: p��T

NNLO does great here too, (even though its not really an NNLO observable) 

Additional gg pieces help at higher pt, but not really in the soft region
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Predictions at high invariant masses. 
As we all know, bump hunts in the diphoton system assume a smooth 
function which can be fitted to the data. Begging the question,
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Predictions at high invariant masses. 
As we all know, bump hunts in the diphoton system assume a smooth 
function which can be fitted to the data. Begging the question,

How smooth is smooth? :-) 

Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

soft [51, 52] and beam [53] functions, together with the process-dependent hard function.
Various component pieces of this calculation, including explicit results for the hard function,
are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg ! ��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
PDFs). On the other hand if the qqg�� amplitudes are included then the corresponding
collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding
implementation in MCFM [46]) the first approach was taken. Here we will follow the second
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NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
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which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
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Figure 10. The ratio of various different theoretical predictions to the NNLO nF = 5 differential
cross section. The different predictions correspond to: the inclusion of the top quark gg ! ��

box diagrams (green), the ��N3LO
gg,nF

correction (red) and the ��N3LO
gg,nF

and the top boxes with the
��N3LO

gg,nF
correction re-scaled by the ratio K(mt) described in the text (blue).

from barrel to end-cap calorimeters. We maintain the same isolation requirements as the
previous section, which again differs slightly from the treatment in the ATLAS paper.

Our first concern is to address the impact of the gg pieces at NLO, represented by
the contribution ��N3LO

gg,nF
defined previously, and the contribution of the top quark loop.

We summarize our results in Figure ??, in which we present several different theoretical
predictions, each normalized to the the default NNLO prediction with 5 light flavors. The
first alternative is one in which the NNLO prediction is augmented by the inclusion of the
top loops, i.e. the gg contribution corresponds to �gg(mt+5lf ) in the notation of section ??.
In the second prediction we use the result for five light flavors but add the NLO corrections
to the gg channel, i.e. the term ��N3LO

gg,nF
. For the final alternative we include the top

quark loop contribution and attempt to account for the NLO corrections to all gg loops by
rescaling the ��N3LO

gg,nF
result by a factor K(mt) that is given by,

K(mt) =
�gg(5`f +mt)

�gg(5`f )
. (4.7)

This collection of predictions covers a range of theoretical options that may extend the
NNLO predictions described in the previous sections. The top loops, illustrated by the
green curve in the figure typically represent around a 1% effect across the invariant mass
range of interest. For m�� < 2mt there is a destructive interference, which reduces the cross
section, whilst at higher energies there is a small enhancement. Therefore, although the top
loops are an important contribution in terms of the nF box loops (as shown in section ??),
they are not particularly important in the total rate. At this order the gg pieces reside in
the Born phase space, which is particularly impacted by the staggered cuts at high m�� .
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Predictions at high invariant masses. 
As we all know, bump hunts in the diphoton system assume a smooth 
function which can be fitted to the data. Begging the question,

How smooth is smooth? :-) 

Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

soft [51, 52] and beam [53] functions, together with the process-dependent hard function.
Various component pieces of this calculation, including explicit results for the hard function,
are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg ! ��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
PDFs). On the other hand if the qqg�� amplitudes are included then the corresponding
collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding
implementation in MCFM [46]) the first approach was taken. Here we will follow the second
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Figure 10. The ratio of various different theoretical predictions to the NNLO nF = 5 differential
cross section. The different predictions correspond to: the inclusion of the top quark gg ! ��

box diagrams (green), the ��N3LO
gg,nF

correction (red) and the ��N3LO
gg,nF

and the top boxes with the
��N3LO

gg,nF
correction re-scaled by the ratio K(mt) described in the text (blue).

analyses the Standard Model background is accounted for by using a data-driven approach
that fits a smooth polynomial function to the data across the entire m�� spectrum. A
resonance might then be observed as a local excess in this spectrum, deviating from the
fitted form. Although well-motivated, one might be concerned that the spectrum may not
be correctly modeled at high energies, where there is little data, and that small fluctuations
could unduly influence the form of the fit and result in misinterpretation of the data. Such
worries could be lessened by using a first-principles theoretical prediction for the spectrum
and it is this issue that we aim to address in this section.

As a concrete example, we will produce NNLO predictions for the invariant mass spec-
trum at high energies using cuts that are inspired by the recent ATLAS analysis [16].
Specifically, these are:

p�,hardT > 0.4m�� p�,softT > 0.3m��

|⌘� | < 2.37, excluding the region, 1.37 < |⌘� | < 1.52 (4.6)

We will only be interested in the region m�� > 150 GeV, so these represent hard cuts on the
photon momenta. The small region of rapidity that is removed corresponds to the transition
from barrel to end-cap calorimeters. We maintain the same isolation requirements as the
previous section, which again differs slightly from the treatment in the ATLAS paper.

Our first concern is to address the impact of the gg pieces at NLO, represented by
the contribution ��N3LO

gg,nF
defined previously, and the contribution of the top quark loop.

We summarize our results in Figure 10, in which we present several different theoretical
predictions, each normalized to the the default NNLO prediction with 5 light flavors. The
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Figure 1: Invariant mass distribution of the selected diphoton events. Residual number of events with respect to the
fit result are shown in the bottom pane. The first two bins in the lower pane are outside the vertical plot range.

The events in this region are scrutinized. No detector or reconstruction e�ect that could explain the larger
rate is found, nor any indication of anomalous background contamination. The kinematic properties of
these events are studied with respect to those of events populating the invariant mass regions above and
below the excess, and no significant di�erence is observed.

The Run-1 analysis presented in Ref. [13] is extended to invariant masses larger than 600 GeV by using the
new background modeling techniques presented in this note (cf. Section 7). The compatibility between
the results obtained with the 8 TeV and 13 TeV datasets is estimated under the NWA hypothesis and
assuming a large-width resonance with ↵ = 6%, using the best fit value of the ratio of cross sections. For
an s-channel gluon-initiated process, the parton-luminosity ratio is expected to be 4.7 [43]. Under those
assumptions, the results obtained with the two datasets are found to be compatible within 2.2 and 1.4
standard deviations for the two width hypotheses respectively.

The 95% CL expected and observed upper limits on �fiducial⇥BR(X ! ��), corresponding to the fiducial
volume defined in Section 6, are computed using the CLs technique [39, 44] for a scalar resonance with
narrow width as a function of the mass hypothesis mX , and are presented in Figure 3. The larger diphoton
rate in the mass region around 750 GeV is translated to a higher-than-expected cross section limit at the

13

A natural concern is that the fit, while good in the region of lots of data, 
may not correctly describe tails with limited data. 
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Figure 11. The rate-normalized shapes of the m�� distribution from the ATLAS collaboration
and the MCFM NNLO prediction for µ = m�� . The lower panel indicates the ratio of the data to
the NNLO prediction.

As we found in the previous section the effects of the NLO corrections to the gg pieces
are larger, however their effects are much more pronounced at lower invariant masses. By
the time invariant masses of order 500 GeV are probed, the corrections are 2% or smaller.
The attempt to model the combined effect of corrections to both the light-quark and top
quark loops shows, as expected, the largest deviations from the NNLO(5`f ) prediction.
However the deviations are still of order 3% or smaller in the high invariant mass region.
Therefore, although the corrections to the gg loops and the effect of the finite top quark
mass can have about a 6% effect at invariant masses around 200 GeV, the effect at higher
masses is somewhat smaller. Since we aim to compare the ATLAS data, which is not
corrected for fakes or identification efficiencies, to our parton-level prediction we are not
concerned about effects at this level. As a result we will simply use the most consistent
prediction3, corresponding to NNLO(5`f ), for comparison with the fitting function used by
ATLAS.

We compare our NNLO prediction to the ATLAS data in Figure ??. We note that
to properly compare our prediction to the data requires knowledge of both the fake rate

3
This is because a consistent inclusion of the effect of top quark loops would require alterations to the

running of ↵s and additional top quark loops in the qqg�� one-loop amplitude.

– 16 –

Can check with a first principles calculation of the shape of the SM 
prediction and compare the shape to the data. 
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Apologies go to…. 

At the beginning I warned of a significant bias in my talk. The last year has 
been fantastic for those developing NNLO calculations. Some of the recent 
results I would have loved to have highlighted are given below. 

Each of these methods are individually intricate and would have taken a lot longer 
than my time to discuss properly. However I hope you get the feeling that this is 
an incredibly exciting time for precision calculations. 

Antenna subtraction (Gerhmann, Gehrmann-De Ridder, Glover et al) : H + 1 jet (Chen Gerhmann, 
Glover, Jaquier 16) , Z + 1 jet (Gehrmann-De-Ridder Gerhmann, Glover, Huss, Morgan 15), gg=>gg 
(Currie, Gehrmann-De-Ridder Gerhmann, Pires, Wells 14) 


STRIPPER (Czakon), top pairs (Czakon, Mitov, Heymes Fiedler 16) H + 1 jet (Boughezal, Caola, 
Melnikov, Petriello, Schulze 15), single top  (Bruchserfeifer, Caola, Melnikov 14)


 Q_T slicing (Catani, Grazzini): WW (Grazzini, Kallweit Pozzorini, Rathlev Wiesemann 16), WZ 
(Grazzini, Kallweit, Rathlev Wiesemann 16), ZZ (Grazzini, Kallweit, Rathlev Wiesemann 15),


Phase space Mappings : VBF (Cacciari, Dreyer,  Karlberg  Salam, Zanderighi 15)
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