Naturalness of the electroweak scale?

Nathaniel Craig
University of California
Santa Barbara

Pheno 2016
Elementary scalars are quadratically sensitive to physics at higher scales.

Independent of regularization scheme.

Model-building scales aside, gravity attests to presence of a higher scale.

No viable proposals for mitigating sensitivity to physics @ Planck scale without new physics @ weak scale.

Hierarchy problem only sharpened with the discovery of an elementary SM-like Higgs (+nothing else so far).
Natural vs. unnatural

Hierarchy problem is not a "just-so story"

<table>
<thead>
<tr>
<th>Field</th>
<th>Symmetry as $m \to 0$</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin-1/2</td>
<td>$m \Psi \bar{\Psi}$</td>
<td>$\Psi \to e^{i\alpha \gamma_5} \Psi$ (chiral symmetry)</td>
</tr>
<tr>
<td>Spin-1</td>
<td>$m^2 A_\mu A^\mu$</td>
<td>$A_\mu \to A_\mu + \partial_\mu \alpha$ (gauge invariance)</td>
</tr>
<tr>
<td>Spin-0</td>
<td>$m^2</td>
<td>H</td>
</tr>
</tbody>
</table>
What’s the scale?

The hierarchy problem is sensitivity to higher scales; quantify sensitivity of Higgs mass to new physics via ratio

\[\Delta \equiv \frac{2\delta m_H^2}{m_h^2} \]

A *guidepost* to where new physics should enter; in the SM with a uniform cutoff \(\Lambda \), SM loops up to \(\Lambda \) give

\[\delta m_H^2(\mu) = \frac{\Lambda^2}{16\pi^2} \left[6\lambda(\mu) + \frac{9}{4} g_2^2(\mu) + \frac{3}{4} g_Y^2(\mu) - 6\lambda_t^2(\mu) \right] \]

Expect new physics to enter and alter SM at some scale*

\(\Delta \lesssim 1 \) (no tuning) requires \(\Lambda \lesssim 500 \text{ GeV} \);
\(\Delta \lesssim 10 \) (10%-level tuning) requires \(\Lambda \lesssim 1.6 \text{ TeV} \);
\(\Delta \lesssim 100 \) (1%-level tuning) requires \(\Lambda \lesssim 5 \text{ TeV} \).

*Best-case scenario, no large logs

See also X. Tata
The naturalness strategy

This is a *strategy* for new physics near m_h, not a *no-lose theorem*, because the theory does not break down if it is unnatural.

But naturalness has often been a very *successful* strategy.

E.g. charged pions

Electromagnetic contribution to the charged pion mass sensitive to the cutoff of the pion EFT.

$$\delta m^2 \sim \frac{3e^2}{16\pi^2} \Lambda^2$$

Naturalness suggests $\Lambda \sim 850$ MeV.
Rho meson (new physics!) enters at 770 MeV: $\Delta \sim 1$
<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Natural?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged pion mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Charm mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Proton mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Cosmological constant</td>
<td>☐ Yes</td>
</tr>
<tr>
<td>Higgs mass</td>
<td>☐ Yes</td>
</tr>
</tbody>
</table>
A physics driver @ LHC

170 of these 226 channels tied to naturalness
Hierarchy Solutions

Extend the SM with a symmetry acting on the Higgs

Supersymmetry

Supersymmetry
Sparticles \tilde{m}

$\approx 4\pi/G$

Higgs m_h

See also X. Tata

Global symmetry

Global-symmetry
Partner particles \tilde{m}

$\approx 4\pi/G$

Higgs m_h

See also A. Pomarol
New particles

Continuous symmetries commuting w/ SM
→ partner states w/ SM quantum numbers

Supersymmetry
\[\phi \rightarrow \phi + \epsilon \psi \]
\[\psi \rightarrow \psi + c^\mu \partial_\mu \phi \]
Opposite-statistics partner for every SM particle

Contribute to the Higgs mass:
\[m_h^2 \sim \frac{3y_t^2}{4\pi^2} \tilde{m}^2 \log(\Lambda^2/\tilde{m}^2) \]

Global symmetry
\[\Phi \rightarrow (1 + i\alpha T)\Phi \]
Same-statistics partner for every SM particle
Two spectra

5 TeV

Supersymmetry

Global symmetry

Simple game for LHC: look for colored partners.
Missing top partner problem
LHC searches driven by top partners

Global Symmetry

Supersymmetry

CMS preliminary $\sqrt{s} = 8$ TeV 19.6 fb$^{-1}$

Observed T Quark Mass Limit [GeV]

Problem 1: nothing yet (~0.1-10% tuning).
Problem 2: not much new to do.
Naturalness being so desirable a gift that we cling to supersymmetry in spite of the absence of experimental evidence.
Naturalness being so desirable a gift that we cling to supersymmetry in spite of the absence of experimental evidence.

NATURALNESS WITHOUT SUPERSYMMETRY?

I. JACK and D.R.T. JONES
DAMTP, University of Liverpool, Liverpool L69 3BX, UK

Received 17 October 1989; revised manuscript received 27 October 1989
But: is this all there is?
Discrete symmetries

Discrete symmetry

Neutral partners \tilde{m}

$\leq 4\pi/G$

Higgs m_h

Symmetry-based approaches to hierarchy problem employ *continuous symmetries*.

Leads to partner states w/ SM quantum numbers.

Discrete symmetries can also serve to protect the Higgs.

Leads to partner states w/ non-SM quantum numbers.

“Neutral naturalness”
The Twin Higgs

[Z. Chacko, H.-S. Goh, R. Harnik '05]

Proof of principle

Symmetry is $\text{SM}_A \times \text{SM}_B \times Z_2$
The Twin Higgs

Consider a scalar H transforming as a fundamental under a global SU(4):

$$V(H) = -m^2|H|^2 + \lambda |H|^4$$

Potential leads to spontaneous symmetry breaking,

$$|\langle H \rangle|^2 = \frac{m^2}{2\lambda} \equiv f^2$$

$SU(4) \rightarrow SU(3)$ yields seven goldstone bosons.

UV: $\lambda \gg 1$ NLSM; $\lambda \ll 1$ LSM
The Twin Higgs

Now gauge $SU(2)_A \times SU(2)_B \subset SU(4)$, w/

$$H = \begin{pmatrix} H_A \\ H_B \end{pmatrix}$$

Then 6 goldstones are eaten, leaving one behind.

Explicitly breaks the $SU(4)$; expect radiative corrections.

$$V(H) \supset \frac{9}{64\pi^2} \left(g_A^2 \Lambda^2 |H_A|^2 + g_B^2 \Lambda^2 |H_B|^2 \right)$$

But these become $SU(4)$ symmetric if $g_A = g_B$ from a Z_2

Quadratic potential has accidental $SU(4)$ symmetry.
The Twin Higgs

Now gauge SU(2)\textsubscript{A} \times SU(2)\textsubscript{B} \subset SU(4), w/ \[H = \begin{pmatrix} H_A \\ H_B \end{pmatrix} \]

Then 6 goldstones are eaten, leaving one behind.

Explicitly breaks the SU(4); expect radiative corrections.

\[V(H) \supset \frac{9}{64\pi^2} g^2 \Lambda^2 \left(|H_A|^2 + |H_B|^2 \right) \]

But these become SU(4) symmetric if \(g_A = g_B \) from a \(Z_2 \) Quadratic potential has accidental SU(4) symmetry.
The Twin Higgs

Achieve this protection for the entire SM by \(\text{SM}_A \times \text{SM}_B \times Z_2 \)

\(\text{SM}_A = \text{us}, \, \text{SM}_B = \text{twin sector} \)

Crucially:

\[
\mathcal{L} \supset -y_t H_A Q_3^A \bar{u}_3^A - y_t H_B Q_3^B \bar{u}_3^B
\]

\[
V(H) \supset \frac{\Lambda^2}{16\pi^2} \left(-6y_t^2 + \frac{9}{4}g^2 + \ldots\right) (|H_A|^2 + |H_B|^2)
\]

One-loop \(Z_2 \)-preserving, \(SU(4) \)-breaking quartic:

\[
V \supset \delta (|H_A|^4 + |H_B|^4) \quad \delta \sim \frac{y_t^4}{16\pi^2} \log(\Lambda/f)
\]

(only quadratic insensitivity to cutoff)
The Twin Higgs

Naive vacuum: \[\langle H_A \rangle^2 = \langle H_B \rangle^2 = \frac{f^2}{2} \]

\(f \) is not far from \(v \), and the cutoff is \(\sim \text{TeV} \). Not much of a protection, and \(O(50\%) \) deviations in Higgs couplings.
The Twin Higgs

Naive vacuum: \[\langle H_A \rangle^2 = \langle H_B \rangle^2 = \frac{f^2}{2} \]

\(f \) is not far from \(v \), and the cutoff is \(\sim \text{TeV} \). Not much of a protection, and \(O(50\%) \) deviations in Higgs couplings.

Option 1: softly break \(Z_2 \)

\[V_{soft}(H) = \delta m_H^2 |H_A|^2 \]

Allows \(v \ll f \), at the price of a tuning \(\sim O(f^2/2v^2) \)
The Twin Higgs

Naive vacuum: \[\langle H_A \rangle^2 = \langle H_B \rangle^2 = \frac{f^2}{2} \]

\(f \) is not far from \(v \), and the cutoff is \(\sim \)TeV. Not much of a protection, and \(O(50\%) \) deviations in Higgs couplings.

Option 1: softly break \(Z_2 \) \[V_{soft}(H) = \delta m_H^2 |H_A|^2 \]

Allows \(v \ll f \), at the price of a tuning \(\sim O(f^2/2v^2) \)

Option 2: hard breaking of \(Z_2 \) \[V_{hard}(H) = \delta_{A,B} |H_{A,B}|^4 \]
The Twin Higgs

Naive vacuum: \[\langle H_A \rangle^2 = \langle H_B \rangle^2 = \frac{f^2}{2} \]

\(f \) is not far from \(v \), and the cutoff is \(\sim \text{TeV} \). Not much of a protection, and \(O(50\%) \) deviations in Higgs couplings.

Option 1: softly break \(Z_2 \) \[V_{\text{soft}}(H) = \delta m_H^2 |H_A|^2 \]

Allows \(v \ll f \), at the price of a tuning \(\sim O(f^2/2v^2) \)

Option 2: hard breaking of \(Z_2 \) \[V_{\text{hard}}(H) = \delta_{A,B} |H_{A,B}|^4 \]

Option 3: tadpole breaking of \(Z_2 \) [Beauchesne, Earl, Gregoire ’15]
The Twin Higgs

\[\mathcal{O}(v/f) \]

\[\Lambda \lesssim 4\pi f \]

\[\sqrt{\lambda}f \]

\[f \]

\[h_B \]

\[t_B \]

\[v \]

\[\Lambda \]

\[v_A \]

\[t_A \]
The Twin Top

The top partner acts as we expect from global symmetry protection, but is not charged under QCD.

\[\mathcal{L} \supset -y_t H_A Q^A_3 \bar{u}^A_3 - y_t H_B Q^B_3 \bar{u}^B_3 \]

\[h + \ldots \quad \quad f - \frac{h^2}{2f} + \ldots \]

Symmetry protecting the Higgs takes us into a different SU(3) group. No direct limit on top partners.
“Neutral” naturalness

Simplest theory: exact mirror copy of SM
[Chacko, Goh, Harnik ’05]

But this is more than you need, and mirror 1st, 2nd gens lead to cosmological problems

Many more options where symmetry is approximate, e.g. a good symmetry for heaviest SM particles.
[NC, Knapen, Longhi ’14; Geller, Telem ’14; NC, Katz, Strassler, Sundrum ’15; Barbieri, Greco, Rattazzi, Wulzer ’15; Low, Tesi, Wang ’15, NC, Knapen, Longhi, Strassler ’16]
Finding a mirror

No longer produce partner particles through strong interactions

- Partner states are SM neutral, couple only to the Higgs. Lighter than $m_h/2$: modest invisible Higgs decays.
- Heavier than $m_h/2$: produce through an off-shell Higgs.

Hard but very interesting; directly probe naturalness

95% Exclusion

$\sqrt{s} = 14$ TeV

[NC, Lou, McCullough, Thalapillil ‘14]
In SM, Higgs is a fluctuation around its vacuum expectation value.

In twin theories, Higgs is misaligned with the VEV by a small amount.

Gives universal shift in Higgs couplings.

Current bounds place twin sector $\sim 3 \times$ SM scale.

Interesting for LHC Run 2 but unlikely to improve much.
Exotic Higgs Decays

- Twin sector must have twin QCD, confines around QCD scale
- Higgs boson couples to bound states of twin QCD
- Various possibilities. Glueballs most interesting; have same quantum # as Higgs

\[\mathcal{L} \supset -\frac{\alpha'_3}{6\pi} \frac{v}{f} G_{\mu\nu}' \epsilon_{\mu\nu}\]\ G'_{\mu\nu} \]

Produce in rare Higgs decays (BR~10^{-3}-10^{-4})

\[gg \rightarrow h \rightarrow 0^{++} + 0^{++} + \ldots \]

Decay back to SM via Higgs

\[0^{++} \rightarrow h^* \rightarrow f\bar{f} \]

Long-lived, decay length is macroscopic; length scale ~ LHC detectors

[NC, Katz, Strassler, Sundrum ’15; Curtin, Verhaaren ’15; Chacko, Curtin, Verhaaren ’16]
Looking for displaced decays

Run 1 searches at LHC in right direction but not sensitive
Compelling prospects for Run 2…

[Csaki, Kuflik, Lombardo, Slone, ’16]
Partner quantum #s

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>SUSY</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD x EWK</td>
<td>Composite / Little Higgs</td>
<td>MSSM</td>
</tr>
<tr>
<td>Neutral x EWK</td>
<td>Quirky Little Higgs</td>
<td>Folded SUSY</td>
</tr>
<tr>
<td>Neutral x Neutral</td>
<td>Twin Higgs</td>
<td>???</td>
</tr>
</tbody>
</table>

A plethora of new naturalness-related signatures to look for @ LHC and beyond

Much to look forward to at LHC Run 2
Not symmetries?

What if the weak scale is selected by **dynamics**, not symmetries?

Old idea: couple Higgs to field whose minimum sets \(m_H = 0 \)
Old problem: How to make \(m_H = 0 \) a special point of potential?

New solution: what turns on when \(m_H^2 \) goes negative?

\[V(\phi) \]

Vev gives **quark masses** which give **axion potential**!

“Relaxion”

[Graham, Kaplan, Rajendran ‘15]
\[(-M^2 + g\phi)|H|^2 + V(g\phi) + \frac{1}{32\pi^2} \frac{\phi}{f} \tilde{G}^{\mu\nu} G_{\mu\nu} \]
\[\Rightarrow (-M^2 + g\phi)|H|^2 + V(g\phi) + \Lambda^4 \cos(\phi/f) \]

But: immense energy stored in rolling field, still need to stop.

Inflation is a good source of friction.

Just need Higgs + non-compact axion + inflation w/

- Very low Hubble scale \((\ll \Lambda_{\text{QCD}})\)
- 10 Giga-years of inflation

Warning: likely just transferring fine-tuning to inflationary sector.
[Di Chiara, Kannike, Marzola, Racciopi, Raidal, Spethmann '15; Fowlie, Balasz, White, Marzola, Raidal '16]

Minimal model: cutoff is

\[M < \left(\frac{\Lambda^4 M_P^3}{f} \right)^{1/6} \theta^{1/4} \sim 30\text{ TeV} \times \left(\frac{10^9\text{ GeV}}{f} \right)^{1/6} \left(\frac{\theta}{10^{-10}} \right)^{1/4} \]

In vacuum, axion gives \(O(1)\) contribution to \(\theta_{\text{QCD}}\)

See also: [Espinosa, Grojean, Panico, Pomarol, Servant '15; Hardy '15; Gupta, Komargodski, Perez, Ubaldi '15; Batell, Giudice, McCullough '15]
Not symmetries?

Fix: make it someone else’s QCD + axion

Field

<table>
<thead>
<tr>
<th>Field</th>
<th>$SU(3)_N$</th>
<th>$SU(3)_C$</th>
<th>$SU(2)_L$</th>
<th>$U(1)_Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>\Box</td>
<td>$-$</td>
<td>\Box</td>
<td>$-1/2$</td>
</tr>
<tr>
<td>L^c</td>
<td>\Box</td>
<td>$-$</td>
<td>\Box</td>
<td>$+1/2$</td>
</tr>
<tr>
<td>N</td>
<td>\Box</td>
<td>$-$</td>
<td>$-$</td>
<td>0</td>
</tr>
<tr>
<td>N^c</td>
<td>\Box</td>
<td>$-$</td>
<td>$-$</td>
<td>0</td>
</tr>
</tbody>
</table>

I.e. axion of a different SU(3); need to tie in Higgs vev

1. New quarks must get most of mass from Higgs:

$$\mathcal{L} \supset m_L LL^c + m_N NN^c + y H L N^c + y' H^+ L^c N$$

2. Must confine, but with light flavor \(\Lambda^4 \approx 4\pi f_\pi^3 m_N \)
...still new physics @ weak scale

Now \[m_N \geq yy'v^2/m_L \] (smallest see-saw mass from EWSB if L heavy)

But also \[
\begin{align*}
m_N \geq \frac{yy'}{16\pi^2}m_L \log(M/m_L) \\
m_N \geq yy'f_\pi'/m_L
\end{align*}
\] (Radiative Dirac mass) (Higgs wiggles biggest)

These bounds imply \(f_{\pi'} < v \) and \(m_L < \frac{4\pi v}{\sqrt{\log(M/m_L)}} \)

Can’t decouple new degrees of freedom.
New confining physics near weak scale!

Couples to Higgs; hidden valley signatures

\[M < \left(\frac{\Lambda^4 M_P^3}{f} \right)^{1/6} \sim 3 \times 10^5 \text{ TeV} \times \left(\frac{10^9 \text{ GeV}}{f} \right)^{1/6} \left(\frac{f_{\pi'}}{30 \text{ GeV}} \right)^{1/2} \left(\frac{yy'}{10^{-2}} \right)^{1/6} \left(\frac{300 \text{ GeV}}{m_L} \right)^{1/6} \]
The 750 GeV elephant in the room

Supersymmetry

RPV sneutrino
[Allanach, Dev, Renner, Sakurai 1512.07645]

\[
\Gamma(\phi \to \gamma\gamma) = \frac{(m^2_\nu + m^2_\tau + m^2_\chi)M^3_\phi}{32\pi F^2}
\]

Sgoldstino
[Petersson, Torre 1512.05333]

Sbino (dirac gauginos)
[Carpenter, Colburn, Goodman 1512.06107]

\[
\begin{pmatrix}
\psi & A_\mu & \lambda \\
\end{pmatrix}
\]

Extra dimensions

KK graviton
[Giddings, Zhang 1602.02793]

[Tension with dileptons]

Radion
[Ahmed, Dillon, Grzadkowski, Gunion, Jiang]

Hard to match rate, incalculable?

Compositeness

E.g. \(SO(6) \to SO(5) \to SO(4)\)
[No, Sanz, Setford 1512.05700]

Generally expect heavy resonances + vector-like matter. Hard to understand lack of Higgs mixing.

Relaxion

Ingredients seem to be there (bifundamental matter, etc.)

Not sure what \(X(750)\) should be.

Neutral naturalness

Doesn’t want to be a twin Higgs due to Higgs mixing. Ingredients are there in a UV completion.

If \(X(750)\) is a (pseudo)scalar, electroweak tuning comparable to CC
Conclusion

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Natural?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged pion mass</td>
<td>Yes</td>
</tr>
<tr>
<td>Charm mass</td>
<td>Yes</td>
</tr>
<tr>
<td>Proton mass</td>
<td>Yes</td>
</tr>
<tr>
<td>Cosmological constant</td>
<td>No</td>
</tr>
<tr>
<td>Higgs mass</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Conclusion

- **Naturalness** a compelling strategy for BSM physics

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Natural?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged pion mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Charm mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Proton mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Cosmological constant</td>
<td>☐ Yes</td>
</tr>
<tr>
<td>Higgs mass</td>
<td>☐ Yes</td>
</tr>
</tbody>
</table>
Conclusion

- **Naturalness** a compelling strategy for BSM physics

- A light Higgs suggests protective symmetries

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Natural?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged pion mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Charm mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Proton mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Cosmological constant</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Higgs mass</td>
<td>✔ Yes</td>
</tr>
</tbody>
</table>
Conclusion

- **Naturalness** a compelling strategy for BSM physics
- A light Higgs suggests protective symmetries
- Robust program of LHC searches for conventional approaches based on continuous symmetries

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Natural?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged pion mass</td>
<td>![Yes] ![No]</td>
</tr>
<tr>
<td>Charm mass</td>
<td>![Yes] ![No]</td>
</tr>
<tr>
<td>Proton mass</td>
<td>![Yes] ![No]</td>
</tr>
<tr>
<td>Cosmological constant</td>
<td>![Yes] ![No]</td>
</tr>
<tr>
<td>Higgs mass</td>
<td>![Yes] ![No]</td>
</tr>
</tbody>
</table>
Conclusion

- **Naturalness** a compelling strategy for BSM physics
- A light Higgs suggests protective symmetries
- Robust program of LHC searches for conventional approaches based on continuous symmetries
- Entirely new approaches now being explored, based on discrete symmetries, dynamics,

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Natural?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged pion mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Charm mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Proton mass</td>
<td>✔ Yes</td>
</tr>
<tr>
<td>Cosmological constant</td>
<td>☐ Yes</td>
</tr>
<tr>
<td>Higgs mass</td>
<td>☐ Yes</td>
</tr>
</tbody>
</table>
Conclusion

• **Naturalness** a compelling strategy for BSM physics

• A light Higgs suggests protective symmetries

• Robust program of LHC searches for conventional approaches based on continuous symmetries

• Entirely new approaches now being explored, based on discrete symmetries, dynamics, ….

• With new signatures and new possibilities, the verdict on weak-scale naturalness is still out. **Exciting times to be in the hunt!**

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Natural?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged pion mass</td>
<td>Yes</td>
</tr>
<tr>
<td>Charm mass</td>
<td>Yes</td>
</tr>
<tr>
<td>Proton mass</td>
<td>Yes</td>
</tr>
<tr>
<td>Cosmological constant</td>
<td>Yes</td>
</tr>
<tr>
<td>Higgs mass</td>
<td>Yes</td>
</tr>
</tbody>
</table>