

Development of Superconducting TDC/ADC/ALU and Neutron Detectors

Ali Bozbey

TOBB University of Economics and Technology Department of Electrical and Electronics Engineering Superconductivity Electronics Laboratory (ETU SEL)

- Introduction to Superconducting Logic
- •Time to Digital Converter
- Analog to Digital Converter
- •Superconducting Stripline Detectors Towards Megapixel Neutron Imaging
- •Arithmetic Logic Unit

Single Flux Quantum (SFQ) Logi

- Based on switching of the Josephson Junctions
- •They can switch up to THz frequencies.
- •They have very low power consumption (~mW).
- •Compatible with the standard design and fabrication tools.
- •It is possible to integrate with semiconductor and/or optical devices.
- Circuit complexities of close to 100 000 Josephson junctions have been reported.
- •Gates working about 750 GHz clock frequency has been reported.

ITRS: The International Technology Roadmap for Semiconductors

Generation of the SFQ Pulse

OBBET

- •Josephson Transmission Lines (JTL)
- •SFQ Splitters
- •SFQ Mergers
- •Gates: AND, OR, NOT ...
- •Flip-Flops
- DC/SFQ and SFQ/DC converters
- •Passive Transmission Lines (PTL)

Josephson Transmission Lines (JTL)

- Interconnection of the logic gates and adjusting the timing of the circuits.
- lb = 0.75 lc
- SFQ pulse from input A propagates by swithing the junctions J1, J2, J3 respectively and escapes from output B.
- Advantages: recovery of SFQ pulse during propagation
- Disadvantages: time delay, jitter, number of josephson junctions

SFQ Splitter

- Splitters are used to increase the fan-out of the logic circuits.
- Similar principle of operation with JTL. Critical currents of the junctions should be chosen properly. $(I_{c1}=1.4I_{c2}=1.4I_{c3})$
- Hence, the SFQ pulse arriving from J1 can have enough power to move the J2 and J3 to voltage state.

9

10

Likharev, Van Duzer

Design to Testing of Digital and Detector Circuits

Design

Measurement Setup

Frequency	Field	Attenuation	
14 kHz	Magnetic	60 dB	
100 kHz	Magnetic	80 dB	
1 MHz	Magnetic	100 dB	
1 MHz	Electric	100 dB	
100 MHz	Electric	100 dB	
100 MHz-10 GHz	Planewave	100 dB	
18 GHz	Microwave	100 dB	

- Time to Digital Converter
- Analog to Digital Converter
- Monolithic Neutron Detector
- Arithmetic Logic Unit

Comparator Circuits

Comparator with high-speed response and high sensitivity

OBBET

Time to Digital Converter (Method 2)

Vernier Caliper

20 6/3/2016

TDC Block Diagram

Ali Bozbey, TOBB University of Economics and Technology

TDC Decoder Look-up Table

		TDC	ΔΤ
07 – 04	03 – 00	OUTPUT	(ps)
0001	0001	0000	0
0001	001X	0001	6.5
0001	01XX	0010	13
0001	1XXX	0011	19.5
001X	0001	0100	26
001X	001X	0101	32.5
001X	01XX	0110	39
001X	1XXX	0111	45.5
01XX	0001	1000	52
01XX	001X	1001	58.5
01XX	01XX	1010	65
01XX	1XXX	1011	71.5
1XXX	0001	1100	78
1XXX	001X	1101	84.5
1XXX	01XX	1110	91
1XXX	1XXX	1111	97.5

Analog to Digital Converter

Fabricated Flash ADC (10 GHz, 4 bit)

34 6/3/2016

Superconducting Stripline Detectors (SSLD) Towards Megapixel Neutron Imager

SSLD (Kinetic Inductance mode)

- 1. SSPD is biased much below its critical current.
- 2. Arrival of a photon over part of the SSLD (L_1) breaks cooper pairs and generates quasiparticles.
- 3. Change of number of cooper pairs and quasiparticles cause change of the (kinetic) inductance (ΔL_1).
- 4. Change of inductance causes a voltage response to be generated (dL_1/dt) .
- 5. This voltage response is converted to current with an series resistance R in the loop (I= V_R/R)
- 6. The current is coupled to the read-out circuit and digitized to be processed by the
- 6 6/3/201encoder circuit.

SSLD (Resistive Mode)

- 1. SSLD is biased just below its critical current.
- 2. Arrival of a photon over part of the SSLD destroys superconductivity locally.
- 3. Destruction of superconductivity causes a local resistance increase.
- 4. Generation of a resistance causes voltage signal under constant bias current.
- 5. This voltage response is converted to current with an series resistance R in the loop (I= V_R/R)
- 6. The current is coupled to the read-out circuit and digitized to be processed by the encoder circuit.

Ishida et al. DOI 10.1007/s10909-014-1159-8

Fabrication Process

NAGOYA UNIVERSITY

ASC2014 August 11, '14 Charlotte

M. Hidaka

AIST New Process for Monolithic Chip

- ✓ J_c of 10 kA/cm² is applied.
- ✓ Die size is 22 mm x 22 mm.
- ✓ Test of detector array was carried out with a monolithic chip without a ¹⁰B layer.

- Fit inside an AIST new process for a monolithic chip die (22mm*22mm).
- 2. Achieve 1000*1000 pixel sensor resolution
 - Detector width < $22mm/1000=22\mu m$
- 3. Have sufficient sensitivity for incoming neutron
- 4. Have small dead time (~10ns)
- 5. Use a single bias point
- 6. Achieve crosstalk free operation and SFQ read-out
- 7. Operation in both CB-KID or CB-TED modes is acceptable.

- $L_2 >> L_1$, L_{2a}/L_{2b} ratio is determined by the location of the irradiation on the stripline.
- Shunt resistors represent the resistive layer fabricated under the stripline layer.

Accessey, TOBB University of Economics and Technology

Coil transfers the current associated with the radiation to the read-out circuit.

Detector Model and Front-

Front-end Circuit: Sim and Exp

Experimental Setup

Monolithic IR Detector 8 6 Amplitude (mV) 2 2 2 4 2 9 0 4600 4700 4800 4900 5000 Position (µm) RAIST CTL (M4) **Scan Direction** SiO₂ BC COU (M2) 02 GC Moat

CRAVITY

OBB ET

Dual Tone Multi Frequency Coding

Many Pixel Operation

- Only one bias point is sufficient to bias all the SSLDs.
- Each SSLD is separated with low pass filters
- Individual SSLD's are coupled to 1-bit comparator circuits with coupling coils.
- Comparator outputs are fed to encoders to extract the address information for the radiated cell.
- Row and column addresses of SSLD's are determined by front-end circuit and encoder circuits.
 - In the figure, Y5 and X6 are triggered with the incoming photon.

Bit Parallel ALU

25 GHz, 2.5 mW

Acknowledgements

• Akira Fujimaki and his associates

- Ministry of Development
- Center of Excellence for Superconductivity Research (CESUR)

The circuits mentioned in these slides were fabricated in the clean room for analog-digital superconductivity (CRAVITY) of National Institute of Advanced Industrial Science and Technology (AIST) with the standard process 2 (STP2). The AIST-STP2 is based on the Nb circuit fabrication process developed in International Superconductivity Technology Center (ISTEC).

If there is an SFQ pulse between two consecutive CLK pulses, logic "1", otherwise logic "0"

