- FCNC effective Lagrangian

$$
\begin{aligned}
\mathcal{L}_{e f f}= & \sum_{U=u, c}\left[i g_{s} \frac{\kappa_{g U}}{\Lambda} \bar{t} \sigma^{\mu \nu}\left[g_{L} P_{L}+g_{R} P_{R}\right] T^{a} U G_{\mu \nu}^{a}+i e \frac{\kappa_{\gamma} U}{\Lambda} \bar{t} \sigma^{\mu \nu} q_{\nu}\left[\gamma_{L} P_{L}+\gamma_{R} P_{R}\right] U A_{\mu}\right. \\
& \left.+i \frac{g_{W}}{2 c_{W}} \frac{\kappa_{z U}}{\Lambda} \bar{t} \sigma^{\mu \nu} q_{\nu}\left[z_{L} P_{L}+z_{R} P_{R}\right] U Z_{\mu}+i \frac{g_{W}}{2 c_{W}} \kappa_{z U}^{\prime} \bar{t} \gamma^{\mu}\left[z_{L}^{\prime} P_{L}+z_{R}^{\prime} P_{R}\right] U Z_{\mu}\right]+h . c .
\end{aligned}
$$

- The FCNC vertex can be realized through following process at $e^{-} p$ collider:
- At production and/or decay vertex through neutral current: $e^{-} p \rightarrow e^{-\bar{t}}$ (Only tq γ and $t q Z$ contribute at production vertex and g include at decay vertex)
- At decay vertex through charged-current: $e^{-} p \rightarrow \nu_{e} \bar{t}, \bar{t} \rightarrow V j$
- Dominant background processes are as follows:
- $\sigma\left(e^{-} b \rightarrow \nu_{e} \bar{t}, \bar{t} \rightarrow \bar{b} W^{-}, W^{-} \rightarrow \ell^{-} \nu_{\ell}\right)=0.39 \mathrm{pb}$;
- $\sigma\left(e^{-} b \rightarrow \nu_{e} \bar{t}, \bar{t} \rightarrow \bar{b} W^{-}, W^{-} \rightarrow j j\right)=1.17 \mathrm{pb}$.
- We take the signal cross section within 1σ of the dominant background cross sections above, i.e.,
- $0.12 \mathrm{pb}<\sigma\left(e^{-} p \rightarrow e^{-} \bar{b} \ell^{-} \bar{\nu}_{\ell}+e^{-} b \ell^{+} \nu_{\ell}\right)<0.66 \mathrm{pb} ;$
- $0.37 \mathrm{pb}<\sigma\left(e^{-} p \rightarrow e^{-} \bar{b} j j+e^{-} b_{j j}\right)<1.96 \mathrm{pb}$.

Coup	Cross Section (pb)
$\sigma\left(e^{-} p \rightarrow e^{\left.-\bar{b} \ell^{-} \bar{\nu}_{\ell}+e^{-} b \ell^{+} \nu_{\ell}\right)}\right.$	
$\gamma_{L}^{u}=10^{-1}$	4.495×10^{-02}
$\gamma_{R}^{u}=10^{-1}$	6.079×10^{-02}
$\gamma_{L}^{c}=10^{-1}$	8.035×10^{-03}
$\gamma_{R}^{c}=10^{-1}$	9.177×10^{-03}
$z_{L}^{u}=10^{-1}$	6.032×10^{-03}
$z_{R}^{u}=10^{-1}$	6.362×10^{-03}
$z_{L}^{c}=10^{-1}$	6.772×10^{-04}
$z_{R}^{c}=10^{-1}$	7.109×10^{-04}
$z_{L}^{\prime u}=10^{-1}$	1.442×10^{-02}
$z_{R}^{\prime \prime}=10^{-1}$	1.036×10^{-02}
$z_{L}^{\prime c}=10^{-1}$	1.982×10^{-03}
$z_{R}^{\prime c}=10^{-1}$	1.777×10^{-03}

- Diagram contributing to the process

- Cross section shows steady increase with the coupling value for the process $e^{-} p \rightarrow \nu_{e} \bar{t}$. It shows the stange behaviour only when the decay of the top quark is introduced in the process.
- Hence we would like to investigate the reason analytically using the narrow width approximation.
- Partonic result for top decay width

$$
\hat{\sigma}=\frac{4}{3} \frac{\Gamma_{W}^{u \bar{d}} \Gamma_{W}^{\ell \bar{\nu}_{\ell}}}{\left(\hat{s}-m_{W}^{2}\right)^{2}+m_{W}^{2} \Gamma_{W}^{2}}
$$

- Under narrow width approximation

$$
\frac{d \hat{s}}{\left(\hat{s}-m_{W}^{2}\right)^{2}+m_{W}^{2} \Gamma_{W}^{2}} \rightarrow \frac{\pi}{m_{W} \Gamma_{W}} \delta\left(\hat{s}-m_{W}^{2}\right)
$$

- Hence the partonic top decay width becomes

$$
\hat{\sigma}=\frac{4}{3} \pi \frac{\Gamma_{W}^{u \bar{d}} \Gamma_{W}^{\ell \bar{\nu}_{\ell}}}{m_{W} \Gamma_{W}} \delta\left(\hat{s}-m_{W}^{2}\right)
$$

