BSRL - The LHC longitudinal density monitor

M. Palm (BE-BI-PM)

BI Day 2016

- Overview
- □ Highlights from Run 2
- Outlook

2015-03-10 BI Day 2016

- **□** Overview
- ☐ Highlights from Run 2
- Outlook

2015-03-10

BI Day 2016

Purpose

- □ **DCCT**: Total number of particles in the ring
- □ **FBCT**: Number of particles per nominal bunch
- BSRL: Measure the longitudinal distribution of particles in the LHC with a sufficiently high dynamic range to quantify the relative population in nominally empty buckets.
 - Luminosity calibration
 - Injection quality
 - Origin of background signal at IPs [1]
 - Requirements: A dynamic range of 5 orders of magnitude, and a time resolution of 100 ps

Along the LHC injector chain, a small fraction of the beam may be trapped in RF-buckets that should be empty. These low-intensity bunches are called "Satellite" and "Ghost" bunches.

Principle

- ☐ Resolution: 50 ps
- □ 1,780,000 bins per histogram
- ☐ 5 min integration time

Analysis

- Signal correction: pile-up and deadtime (TDC)
- Bucket-wise integration (population per bucket)
- => Fraction of beam in satellite
 & ghost buckets
 (Q_{sat}, Q_{ghost})

...

2015-03-10 BI Day 2016

Detectors

□ APD

- Single-photon avalanche diode
- Robust
- 70 ns deadtime
- \Box 50 μ m sensor
- Afterpulses
- □ Used 2010-2015

■ Detector responses to laser pulse train (25 ns separation)

Hybrid

- □ Electron bombardment + avalanche
- Damaged by too intense light
- No deadtime
- □ 6 mm sensor
- No afterpulses (almost)
- Dark count rate <50cps
- Used since 2015

2015-03-10 BI Day 2016

Installation

CERN

BI Day 2016

- Overview
- □ Highlights from Run 2
- Outlook

2015-03-10 BI Day 2016

Performance

Performance

BI Day 2016 11

Performance

Precision

- Relative bucket population
- Sum of all histograms from STABLE beam mode
- □ Small injection artefacts (< 10⁻⁵ of nominal bunches) made visible by longer integration time

Fill 4634, B2, STABLE

Ghost & Satellite fraction

- Example, B1: Fill 4634 (Protons, 2.51 TeV, 44 bunches)
- Fraction of beam in nominally empty buckets varies strongly during fill.
 - Decreases during ramp
 - □ Peaks at 2.7%
 - Unbunched
- Consistent with BSRA?

Ghost & Satellite fraction

- Example, B1: Fill 4634 (Protons, 2.51 TeV, 44 bunches)
- Fraction of beam in nominally empty buckets varies strongly during fill.
 - Decreases during ramp
 - □ Peaks at 2.7%
 - Unbunched
- Consistent with BSRA?
 - ☐ Yes!

 $DCCT \times \sum Abort \ Gap =$ Abort gap population (BSRL)

BI Day 2016 15

Extras

- Different measures of bunch length
 - ightharpoonup FWHM, RMS, σ_{fit}
- Bunch shape
- Synchronous phase shift (time averaged)
- ...

[Animation]

- Overview
- □ Highlights from Run 2
- □ Outlook

Outlook

- Beam losses from opposite beam interfering with SR-signal
- Off-line correction possible. Long-term damage?
- Third hybrid installed in UA47 for feasibility test

Thanks to: Stefano Enrico Federico Aurelie Georges

Thank you for your attention!

[1] Preprint: Beam-induced and cosmic ray backgrounds observed in the ATLAS detector during the 2012 proton-proton running period (DAPR-2014-01), The ATLAS collaboration
[2] First results of the LHC longitudinal density monitor, A. Jeff et.al, Nuclear Instrumentation and Methods in Physics Research A 659 (2011) 549-556

Backups

Beam loss interference

- Profile of opposite beam is detected
 - Most likely beam losses(?)
 - Bunched signal from wrong beam corrupts measurement
 - ...can be corrected
 - Long term damage?

2015-11-12

Bunch length

Distribution of all bunch lengths during fill 4634

$$4 \times RMS = 4\sqrt{\int (t - \langle t \rangle)^2 \rho(t) dt}$$

 $4 \times FWHM/2.35$

BI Day 2016 2015-03-10

Bunch length (2)

Distribution of bunch lengths during fill 4690

0.00006

- Initially: RMS increasing, FWHM decreasing
- Consistent with a flatter bunch shape (e.g. square or waterbag) being exposed to Gaussian diffusion (convolution w. Gaussian) and bunch compression

2.94

2.92

2.90

4*FWHM/2.35

BQM, B2

APD: Performance

"Phantom" bunches

"Phantom" bunch signal typically decreases during the fill

Mechanism not fully understood...

 Possible cause: bias voltage ripple (>GHz) leading to sensitivity fluctuations and avalanche onset.

Distorted bunch profile

2015-11-12