A Wall Current Transformer for bunch-by-bunch intensity measurements in the LHC

Michal Krupa 10/03/2016

Outline

- Bunch-by-bunch intensity measurements in the LHC
- Wall Current Transformer design and installation
- Laboratory and beam measurements
- Summary

Bunches in the LHC

Typical LHC values:

• Bunch intensity: $5.10^9 - 1.5.10^{11}$ particles

Bunch length: 1 - 2 ns

Bunch spacing: 25 ns

From FBCT to ICT / WCT

- Run 1: Fast Beam Current Transformers (FBCT) used for bunch-by-bunch intensity measurements in the LHC. Sensitivity to the transverse beam position and bunch length.
- **LS1:** Design of new monitors for absolute bunch-by-bunch intensity measurements. Two developments in parallel:
 - Integrating Current Transformer (ICT) by Bergoz
 - Wall Current Transformer (WCT) by CERN
- 2015: Commissioning of ICT and WCT
- 2016: Installation of two WCTs as the operational system

FBCT principle of operation

Bergoz ICT

Commercially available toroid compatible with the existing LHC FBCT mechanics and cooling system

WCT principle of operation

WCT principle of operation

$L_{\scriptscriptstyle m LF}$	$\sim 10~\mu H$	$L_{\scriptscriptstyle m W}$	~	1 nH
$L_{\scriptscriptstyle m RF}$	$\sim 0.1 \text{ nH}$	$R_{\scriptscriptstyle m W}$	~	$50 \text{ m}\Omega$
$C_{\scriptscriptstyle\mathrm{RF}}$	$\sim 50 \text{ nF}$	$L_{\scriptscriptstyle m WCT}$	~	1 mH
R_{RF}	$\sim 1 \Omega$	$R_{\scriptscriptstyle m WCT}$	~	5 Ω
C_{di}	$\sim 1 \text{ pF}$	N	~	10

WCT design

All parts cut in half – installation and removal does not require breaking the accelerator vacuum

WCT design

Calibration winding:

- single turn
- calibration with current
- low resistance at low frequencies (minimising power dissipation)
- high impedance at high frequencies (decoupling from beam)

Signal winding:

- few turns
- low impedance
- averaging two nearest transformers on the PCB

Signal addition:

the four outputs are passively summed (averaged) outside, but close to, the monitor

Magnetic cores

LHC Point 4 installation in 2015

System A (operational): no change during LS1

System B (development): two new monitors (WCT + ICT), digital acquisition in parallel to DABs

LHC Point 4 installation in 2016

System A (operational): two new WCTs installed during YETS 2015/2016 to be commissioned in 2016

LHC WCT installation

Design launched: 01/10/2013

First installation in the LHC: 02/03/2015

Bandwidth

Lab WCT:

- work in progress
- RF bypass
- 1.1 GHz filter
- low cut-off: 500 Hz

LHC WCT:

- RF bypass
- 400 MHz filter
- low cut-off: 500 Hz

LHC ICT:

- no filter
- low cut-off: 600 Hz

Test bench not very reliable above 1 GHz

FBCT / WCT nominal bunch

10/03/2016 M. Krupa BI Day 2016

16

Bunch position sensitivity MD

Dedicated MD on 20/07/2015

FBCT $\Delta I/I \approx (0.3 - 0.7)\% / mm$

WCT ∆I/I < 0.001% / mm Not measurable

Bunch length sensitivity MD

Ad-hoc MD on 22/09/2015

FBCT $\Delta I/I < 0.2\% / ns$

WCT $\Delta I/I < 0.2\% / ns$

Radial modulation

Chromaticity measurement by modulation of the RF frequency.

LHC fill: 3670 01/05/2015 Post LS1 commissioning WCT was rescaled to overlap with the FBCT

19

Orbit correction

10/03/2016 M. Krupa BI Day 2016

20

Satellite and ghost bunches

BI Day 2016 10/03/2016 M. Krupa

21

Summary

- During 2015 performance of the first prototype
 WCT was evaluated with the LHC beams
- The WCT was shown to be insensitive to beam position and bunch length variations
- The WCT output pulse is shorter than the output pulse of the FBCT – measurements are easier
- During YETS 2015/2016 the two operational FBCTs were replaced with the WCTs
- The new WCTs are waiting for commissioning with beam

Thanks for the attention

Questions?

Special thanks to:

M. Gasior and S. Bart Pedersen, D. Belohrad, N. Chritin, F. Guillot-Vignot, J. Kral, T. Lefevre, P. Odier, L. Soby, BI Day organisation

BSRT calibration

FBCT phasing

10/03/2016 M. Krupa Bl Day 2016

25

LHC WCT installation

Active splitting – no cross-channel reflections

Different gain and bandwidth for each channel

FBCT / ICT / WCT nominal bunch

Impedance

Beam position sensitivity MD

Dedicated MD on 20/07/2015

FBCT

ICT $\Delta I/I \approx (0.3 - 0.7)\% \cdot mm^{-1}$ $\Delta I/I \approx (0.01-0.02)\% \cdot mm^{-1}$

WCT $\Delta I/I < 0.001\% \cdot mm^{-1}$ Not measurable

29

Bunch length sensitivity MD

Dedicated MD on 20/07/2015

FBCT $\Delta I/I < 0.2\% \cdot ns^{-1}$

ICT $\Delta I/I < 0.2\% \cdot ns^{-1}$

WCT $\Delta I/I \approx 0.5\% \cdot ns^{-1}$ Not understood at the time of the MD

Baseline droop and restoration

10/03/2016 M. Krupa BI Day 2016

31

WCT bunch response

32

Doublet bunches

10/03/2016 M. Krupa BI Day 2016

33

Satellite and ghost bunches

10/03/2016 M. Krupa BI Day 2016

34

Energy ramp

Bunch length reduction, RF change, orbit change, unbunched beam loss

LHC fill: 4643 21/11/2015 Ramp FBCT, ICT and WCT were rescaled to overlap with the DCCT

Van der Meer scans

Absolute bunch-by-bunch measurements

LHC fill: 4538 24-25/08/2015 VDM scans No rescaling, all plots as logged

(un)Stable beams

2.22 le14 Ring 2

2.21

2.20

2.18

2.17

2.16

2.15 WCT

FBCT

2.14

2.16

2.15 Local time, 26/10/2015

LHC fill: 4538 26/10/2015 Stable beams ICT and WCT were rescaled to overlap with the FBCT

WCT calibration circuit

Current source:

- ~10 ppm shot-to-shot stability
- ~100 ppm accuracy
- ~5 µs switch-on time
- I_{CAL} limited by V_{CAL} (~1.5 A for R_{CAL} ~ 10 Ω)
- R_{REF} : 5 Ω ± 0.01% < 0.2 ppm/°C

38

WCT calibration circuit

Current measurement:

- Half-bridge principle
- Variable reference voltage source controlled by potentiometer and DAC (coarse / fine)
- R_{RFF} : 10 $\Omega \pm 0.01\%$ < 0.2 ppm/°C
- R_{HB} : 100 k Ω ± 0.01% < 1 ppm/°C

M. Krupa BI Day 2016 39