The LHC Beam Gas Vertex Detector (BGV)

Q. Veyrat

BI Day

10 March 2016

Outline

Introduction

2 BGV Demonstrator

Beam Gas Vertex monitor (BGV)

- Development of a transverse profile monitor for HL-LHC
- Based on the *beam-gas imaging technique* pioneered in LHCb

 JINST 7 (2012) P01010, JINST 9 (2014) P12005
- Measurement principle: Tracks \rightarrow beam-gas interaction vertices \rightarrow transverse beam profile (2D)
- Can provide also (at low rate): beam position and angle, relative bunch populations, ghost charge, abort gap population, longitudinal profile (needs timing detector with ∼50 ps resolution)

Development goals and approach

- Phase 1: demonstrate the potential by installing a prototype system on one beam at the LHC (BGV Demonstrator)
 - Make a sequence of measurements, full beam and b-by-b, also during ramp
 - Modest requirements on the measurement frequency, precision and accuracy
- Phase 2: build a full-blown BGV for each LHC ring
 - Bunch width resolution: < 5 % in $\Delta t <$ 1 min
 - Absolute beam width accuracy: 2 %
- Collaboration required: BE-BI, TE-VSC, PH-LHCb, EPFL, Aachen BGV Demonstrator Collaboration Agreement

Demonstrator conceptual design

- Detector external to the chamber; No movable parts
- Expectations for the **Demonstrator** (see additional slides):
 - Bunch width resolution: 5 % in $\Delta t = 5$ min
 - Absolute width accuracy: 10 %
- Beam size, aperture, target gas ⇒ BGV size
- Critical design parameters: minimal approach to the beam, polar angle acceptance, and material budget (window $x/X_0 \approx 1$ %) [Ref.]

Overview

- Vacuum system: Designed and produced by CERN (+outsourcing)
- Detector: Scintillating fibres read out with SiPMs
 - Developed by EPFL and RWTH Aachen
 - Same technology as for the LHCb upgrade

Detector

Double sided detector modules – 2° "stereo" angle mattresses produced at **Aachen**, mechanics and electronics – at **EPFL**

Scintillating fibre mattress

- \bullet 260 \times 340 mm
- Optimized geometry (corner cut)
- Fibre diameter 250 μm (Kuraray)
- 4 and 5 layer mats

SiPMs

- 128-channel arrays (Hamamatsu)
- $\bullet \ \ \text{Channel size} = 0.25 \ \times \\ 1.2 \ \text{mm}$
- Noise increases with radiation
 - ⇒ cooling to reduce noise

Detector

2 tracking modules : X, X' and Y, Y'

Trigger scintillators (Level–0 trigger) 1/2

Provide information which bunch-crossings should be read out (DAQ limited to 1 MHz)

4 scintillators

2 upstream of the gas tank: veto upstream events

2 downstream of the detector: require certain signal to readout the event

Events with losses from the other beam do not trigger

Trigger scintillators (Level–0 trigger) 2/2

- Can provide standalone measurement of the relative bunch populations and ghost charge
- Data shown for fill 4479 (Oct 2015)

TS3 2015

TS3 2015

Detector cooling 1/2

- Developed system to cool the SiPMs down to $-40~^{\circ}\text{C}$
- Will start without cooling, later decrease T gradually
- Standalone chiller in the service tunnel
- Used C_6F_{14} , considering also Novec 649
- Transfer line and a distribution manifold in the LHC tunnel

Detector cooling 2/2

- **Problem encountered**: slow diffusion of the cooling liquid through the Silicon tubes
- Solution : use rigid copper tube for transfer line
- Cooling delayed, long transfer line installed during YETS

YETS 2015

"Physics" software

Based on the **LHCb software** framework

GAUDI: a set of SW components for developing event simulation, reconstruction, visualisation, etc. applications. SW development facilities and interfaces to 3rd party SW (e.g. PYTHIA and GEANT4). Used by several HEP experiments.

- Simulation
 - Generate beam-gas interactions
 - Geometry description and detector response
 - Develop event reconstruction algorithms
 - Study vertex resolution systematic
- Event reconstruction
 - Pattern recognition and track fitting
 - Vertex reconstruction
- Initial versions of the algorithms are ready

Status and next steps

- The BGV Demonstrator installation was completed in TS3 2015
- Data recorded during November and December 2015
 - Protons and ions fills recorded
 - Gas injected during one fill (but low pressure)
- Light-protection cover ("tent") installed during YETS
- Priority for this year:
 - Treatment of raw signals, corrections, zero-suppressed readout
 - Track and vertex reconstruction
 - Develop online profile measurement application
 - Publishing and logging of event data and measurements
- End of cooling installation for TS1 2016

Additional slides

ADDITIONAL SLIDES

Beam width measurement and error 1/3

- Accumulate vertices over certain time Δt
- Determine beam angle in the x z and y z planes
- Fit a Gaussian to the transverse distributions
- The statistical precision on σ_{beam} is determined by the N_{vertices} used in the fit (scales as $1/\sqrt{2N}$)
 - Want high rate of interactions ⇒ inject gas
 - Demonstrator designed to get ~ 50 Hz of "good" vertices per nominal bunch (see details in the backup slides)
 - \Rightarrow For $\Delta t = 5$ min, we get stat. precision $\approx 4 \%$
- The main **systematic error** on σ_{beam} comes from the vertex resolution
 - Want precise detector, minimum material, and high track multiplicity
 - Selecting high multiplicity events reduces the rate of "good" vertices

Beam width measurement and error 2/3

• For a beam with Gaussian transverse shape:

$$\sigma_{\it raw}^2 = \sigma_{\it beam}^2 + \sigma_{\it vtx.res}^2$$

• When $\delta \sigma_{raw}/\sigma_{raw} \rightarrow 0$:

$$\frac{\delta \sigma_{\textit{beam}}}{\sigma_{\textit{beam}}} = \frac{\sigma_{\textit{vtx.res}}^2}{\sigma_{\textit{beam}}^2} \cdot \frac{\delta \sigma_{\textit{vtx.res}}}{\sigma_{\textit{vtx.res}}}$$

- The vertex resolution $\sigma_{vtx,res}$ depends on z_{vtx} and N_{tracks}
- It can be determined from data alone (track splitting method)
- The determination of the uncertainty of the vertex resolution $\frac{\delta \sigma_{vtx.res}}{}$ requires simulation (compare results of track splitting and $\sigma_{vtx.res}$ MC-truth methods)
- \bullet For the BGV Demonstrator aim for $\frac{\delta\sigma_{vtx.res}}{\sigma_{vtx.res}}=$ 10 % (LHCb has achieved 5 %)
- σ_{beam} depends on E_{beam} and ϵ_{n}
 - accuracy for larger beam (at injection and with large emittance)

Beam width measurement and error 3/3

- Plot of the systematic error from vertex resolution
 - during the early design studies (later, the minimal aperture was fixed to 26 mm)
 - The plot is for $E_{\rm beam} = 6.5 \text{ TeV}$
- These results are obtained with a simplified simulation application
 - \bullet More details can be found in BGV #20, BGV #22 and Emitt. meeting Nov 2013
- ullet Strong cuts were applied on $N_{
 m tracks}$ (select 1 out of 1000 events)

For $\epsilon_{\rm n}=2\mu m$ expect:

$$ullet rac{\delta \sigma_{beam}}{\sigma_{beam}} < 5 \ \% \ (0.45 \ {
m TeV})$$

•
$$\frac{\delta \sigma_{beam}}{\sigma_{beam}} = 10 \% \text{ (6.5 TeV)}$$

Vacuum system 1/3

Vacuum system 2/3

Engineering design N. Chritin (EN-MME) and P. Magagnin (BE-BI) **Production**

- Managed by the main workshop
- Window chamber most complex and delicate
- Al block forging (Imbach, CH), machining and EB welding (CERN)

Treatment and Qualification

- Cleaning, copper plating and NEG coating (TE-VSC)
- RF test (BE-ABP), bakeout and vacuum qualification (TE-VSC)
- Metrology (EN-MME)

Vacuum system 3/3

- BGV chambers installed in July 2014 (EN-HE)
- Alignment (Survey) and bakeout (TE-VSC) done

Additional systems:

- Chamber temperature monitoring (help from TE-ABT)
- Forced-air chamber cooling (against RF heating)
- This year we observed T increase up to 2 °C (fill with 2200 bunches)

Detector 2/2

- Two modules fixed together on a common plate: "2-module assembly"
- In total:
- 8 detector modules arranged in 2 "planes"
- $8 \times 2048 = 16384$ channels

Detector cooling 1/2

- \bullet Developed system to cool the SiPMs down to $-40~^{\circ}\text{C}$
- Will start without cooling, later decrease T gradually
- Standalone chiller in the service tunnel
- Used C_6F_{14} , considering also Novec 649
- Transfer line and a distribution manifold in the LHC tunnel
- Silicon tubes and Armaflex insulation

Dry air

Using compressed air as dry air Dew point = $-40~^{\circ}\text{C}$,

p < 0.1 bar Thanks to EN-CV

Readout & Control

- BGV readout based on LHCb VELO
- 25 ns, 1 MHz maximum rate
- Readout trigger provided by scintillators
- Control based on PVSS/WinCC-OA (copy LHCb)
- Interface to LHC CMW to exchange data and commands (in preparation)

Readout specifics

- SiPM \Rightarrow Beetle chip \Rightarrow Repeater \Rightarrow 60 m \Rightarrow TELL1 board
- Beetle chip
 - Radiation tolerant analog readout chip developed for LHCb
 - Integrates 128 channels with low-noise charge-sensitive pre-amplifiers and shapers
 - Accepts trigger rates up to 1.1 MHz
 - The output is multiplexed onto 4 ports at 40 MHz (32 channels/port)

TELL1 board

- Readout board used in LHCb for optical or analogue data from the front-end electronics
- 8-bit ADC sampling at 40 MHz
- FPGA-based pre-processing (common mode correction and zero suppression)

DAQ

- DAQ installed in TS2 2015
- All systems functional

- A single chassis (HP ProLiant "Blade") hosts the control server and CPU boards
- Thanks to BE-CO

Racks layout Rack photos

Readout commissioning 1/2

ADC DELAY SCAN

- Special data-taking configuration used to optimize the sampling time of the TELL1 boards with respect to the output produced by the Beetle chips
- Scan the 16 possible fine delay settings on the TELL1 boards
- Uses test pulses produced by the Beetle (no beam)
- Data taken with bad and good ADC delay setting (Beetle headers visible)

PULSE SHAPE SCAN

 Special data-taking configuration used to adjust the common TELL1/beetle phase with respect to the LHC clock

Readout commissioning 2/2

L0 trigger latency

- Optimal setting found (25-ns granularity)
- Beetle pulse shape visible: starts negative, tail is positive, extends over a few 25-ns slots

Possible beam measurements

- Beam position and angle
- Transverse beam profile
- Main interest for BI
- Full beam and b-by-b, absolute scale, cover full LHC cycle
- Longitudinal profile
- Need timing information (\sim 50 ps resolution)
- Relative bunch charges
- Compare rates between bunch slots
- Ghost charge, abort gap population
- Normalize rate to filled bunch slots