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Operational requirements.
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Measure transverse beam size with a relative error (systematic + 
statistical) = 1%. 

e.g. for LHC beam with 25ns bunch spacing & 72 bunches, at 25 GeV 
the beam size = 3.7 mm → detector resolution < 1mm. 

Readout modes: 
1) Basic mode: Continuous measurement during the cycle average 

over all bunches @ 1kHz.


2) Normal mode: Continuous bunch-by-bunch measurement 
during the cycle @ 1kHz →  Time resolution < 25ns & 
measurement time > 1s.  


3) Burst mode: Bunch-by-bunch and turn-by-turn for 5000 turns 
at chosen moment of the cycle.



PS constraints: Vacuum pressure.
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For beam size relative statistical error = 1% (5%) need to detect 
12,000 (500) e-/ions (Federico Roncarlo CERN-THESIS-2005-082)

Gas injection not possible (problem for ions). 


How many turns are needed to measure beam size of a single bunch 
with relative error = 1%?


Assuming pressure = 1x10-9 mbar & gas = H2 

# ionisation e- / ions per bunch per turn = 1

→  To measure beam size of single bunch with 1% (5%)  
relative error requires ~12,000 (500) turns. 

desirable



PS constraints: Outgassing, radiation, mechanical.
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• Vacuum: outgassing ≤ 1∙10-7 mbar∙l∙s-1.

• Radiation: 10 kGy/yr at beam pipe, 1 kGy/yr at 40 cm.

• Mechanical:

80 cm

14.6 cm

7.0 cm



Summary of requirements. 
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Detector resolution < 1mm.

Time resolution < 25ns.

Continuous measurement > 1s.


Does any existing IPM design meet all these requirements 
(+ outgassing, radiation & mechanical constraints?)



Rest gas ionisation monitors:
MCP + phosphor screen (CERN SPS/LHC).
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Rest gas ionisation monitors:
MCP + wire array (Fermilab / J-Parc).
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Common problem: MCP lifetime.
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Gain of each MCP channel gradually reduced as it is it amplifies more 
and more electrons.

Some solutions:

• Calibrate with EGP (CERN LHC).

• Limit degradation by preventing electrons 

hitting MCP when monitor not used (Fermilab).


LHC B1H exposed to EGP.

Gain of channels which “see” the beam reduced faster than those on 
periphery → inhomogeneous MCP gain. 

… but eventually MCP must be replaced (vacuum intervention, cost). 



Idea: Replace MCP + Phosphor/Wire array with 
Hybrid pixel detector.
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Hybrid pixel detector.
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Hybrid pixel detector.
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Hybrid pixel detector for ionisation profile monitor.
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Hybrid pixel detector for ionisation profile monitor.
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Hybrid pixel detector for PS-BGI:
100um silicon sensor bonded to a Timepix3 chip.
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Timepix3 characteristics:

• Detector resolution = 55um, 
• Time resolution = 1.56 ns, 
• Radiation hardness < 2 MGy,

• Triggerless readout: 


Above threshold → Event( Time of Arrival + Time over Threshold ).


Performance limitations:

• Dead time per pixel > 475 ns,

• Output bandwidth < 5.2 Gbps (80 MEvents/s). 




Conceptual design.
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Field cage design.
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Field cage design.
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1) Strength of magnetic field?

2) Homogeneity of magnetic field?

3) Homogeneity of electric field?



Simulation.
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• Complete simulation of IPM 
performance by Kenichiro.


• Includes all known physical 
effects:

• Initial electron velocity.

• Space charge.

• Drift field & magnetic field 

inhomogeneity. 


• Validated on LHC BGI data.


• Distortion < 0.1%; even with upto 
a factor 10 higher beam intensity.  


Kenichiro Sato

Input σx=3.7 mm

Output σx=3.7 mm

B=0.2 T



Field cage: Novel design elements.
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Technical design.
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Technical design.
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Pixel detector, front-end and back-end readout electronics.

Swann Levasseur, Hampus Sandberg



Pixel detector: Requirements and design.
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• Operation in UHV → Careful selection of 
materials & processes.


• High speed digital interface  
(20.48 Gb/s) → Control of track 
impedance, cable lengths & connections.


• High Radiation levels  
(>10 KGy/yr) → Use of radiation hard 
components.


• Cooling →  Liquid cooling to 0 deg.

Swann Levasseur



Pixel detector: Ceramic board.
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TPX3 + 100μm p-on-n 
Si sensor Ceramic  

board

µ-connectors

Power solder-pads

Fixation holes

Swann Levasseur

beam



Pixel detector: Flexible cables.
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• Link between the ceramic board 
and the electrical feedthrough.


• Impedance and differential pair 
skew control.


• Vacuum qualified polyamide 
substrate.

DSUB78

µ-con LCP substrate

Swann Levasseur



Pixel detector: Cooling.

27

Liquid (C6F14) 
cooling to 0 ℃.

Ceramic brazed to 
copper.



Readout architecture: Long term.
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Readout architecture: For 2016 prototype tests.
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Swann Levasseur
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Pixel detector readout firmware.
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Hampus Sandberg

SPIDR firmware (NIKHEF): 

• General purpose readout system for all Medipix / Timepix chips,

• Not designed for operation in radiation environment,

• No GBTx support. 
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Radiation tolerant readout firmware for Timepix3.
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Hampus Sandberg

Create Timepix3 control packets directly in the PC (not the FPGA).


FPGA firmware:

• Routes packets to the Timepix3 chips,

• Triplicates logic to mitigate SEUs.


 



Outlook & Summary.
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Installation of prototype device in June 
2016 technical stop. 


Pixel detector based IPM offers the potential for:

• bunch-by-bunch and turn-by-turn measurement of the beam size,

• an MCP free instrument. 

Key developments: 

• pixel detector readout electronics,

• complete IPM simulation.   

Objectives:

• Gain experience with pixel detector 

in beam environment.

• Quantify number of ionisation & 

background electrons.



Thanks!



Spare Slides.



Radiation tolerant firmware.
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New triplet magnet design.

36

Dominique Bodart


