A New Acquisition System For The SPS And LHC Fast BCTs

Jiri Kral

Overview

- New LHC and SPS per bunch intensity measurement system
 - Below 1% precision
 - Up to high (2e10 charges) and low gain (2e11 charges) channels
- Based on the VFC board (CERN) with FMC-1000, 1 GHz
 2-channel ADC mezzanine (supplier)

650 MHz ADC sampling rate currently (1 GHz under investigation)

Hardware

Data processing in the firmware

- JESD204B line in between ADC and FPGA, 4 x 6.5 Gbit/s
- Integration, baseline subtraction on per-bunch bases
- Deconvolution to remedy tails crossing to the next bunch
- Averaging over N turns (224, ...)
- Possibility of zero suppression of the raw or averaged data

Available measurements

Continuous

- Per bunch intensity integrals, averaged over N turns
- Turn intensity integral, averaged over N turns
- Beam filling pattern
- Snapshots
 - Raw ADC data
 - Unaveraged bunch integrals
 - Computed baselines
 - Unaveraged turn integral

$$\langle I_{bunch,i} \rangle = \frac{\sum\limits_{n=0}^{N_{turnavg}-1} I_{bunch,i,n}}{N_{turnavg}}$$
$$\langle I_{turn} \rangle = \frac{\sum\limits_{n=0}^{N_{turnavg}-1} I_{turn,n}}{\sum\limits_{n=0}^{N_{turnavg}-1} I_{turn,n}}$$

All measurements are time stamped using the BST time

Integration

- Integrating constant # of samples per bunch
- Free running 650 MHz
 ADC sampling clock
 - LHC frequency out of FMC-1000 VCXO range
 - 16 samples / bunch
- Averaging over many turns
 - i.e.: many sampling phases
 - Immune to small phase shifts

Baseline subtraction

Per bunch baseline reconstruction

Signal overflow to following bunches

Per turn not possible due to BCT droop

 Linear interpolation in between two points

- Either with fixed phase
- Or min of 2 consecutive samples

$$baseline_{bunch} = \frac{\sum_{i=0}^{1} min_{bunch+i}(sample_{0,}sample_{1})}{2}$$

 Zero suppression with a constant threshold

Baseline corrections

- Beam synchronous noise, FPGA switching noise or the baseline min() of 2 samples requirement create a constant offset
 - Constant per bunch offset correction

- Rounding error on turn integral
 - Constant offset turn correction
 - Magnitude close to pilot bunch intensity in low gain channel

... and lower, when bunch phase rotated 180 degrees

Deconvolution

 Simple deconvolution of 10 consecutive bunches seems to give reasonable results

Timing

- After acceleration, the beam arrives sooner to the measurement point than clock edge does
 - Change in sampling phase
- Shift of up to -12 ns in SPS
- In LHC, -1.5 ns observed for heavy ions

Timing correction

- On-line peak finding to identify maximum of each bunch signal
 - Bunch boundaries relative to the maximum position
- BST clock phase shifted and tuned continuously to the present beam
 - Supplies bunch boundaries of unfilled bunches
- In case of "adiabatic" change, possibility to track bunches across bunch boundaries (>25ns)
- Auto-calibration possible on pilot
 - Of both bunch and turn phase

11

Automation

- Boot ROM includes configuration of the VFC board (voltages), FMC-1000 clock generation, ADC and JESD204B link
 - No need for complicated software driven boot
 - Simple ROM updates without need to recompile the FW
- Several automated calibration procedures available
 - Bunch baseline correction
 - Turn baseline correction
 - Beam timing
- On-board beam dump detection to trigger snapshot
 - Dump trigger might arrive quite late

Beam Loss Monitor

 Diamond Beam Loss Monitor FW module was developed

 Shares raw ADC snapshot – data

 Implements new histogram of, N = # of ADC samples in turn, values

- Incremented on first sample that crosses threshold
- Relative to either BST turn start or external trigger

Deployment

- VFC card includes flash memory which can hold the FW
- VFC factory (golden) image prepared
 - Accesses flash via VME or JTAG, loads application image
 - Write protected avoids bricking the board with a failed flash
 - Watchdog reconfigures to factory, if application image fails
- Available to all VFC card users (with documentation :)

First intensity measurement

- Relative agreement with DCCT within 1% for pp
 - Observed debunching
 - No absolute calibration,
 ADC linearity correction, etc.

ICT BCTW noise measurement

- Evaluated BCTW and ICT noise background
 - Different gain and bandwidth (60 MHz ICT, 150 MHz BCTW)
 - Gain aligned using comparison to the DCCT data (f = 1.23)
 - Bandwidth factor from aligning white noise powers (f = 1.58)

 $N_{power}[dBm] = 20 \log(\sigma[V]) - 10 \log(R) + 30; R = 50 Ohm$

Presumed white noise → proportional power to bandwidth

- $\Sigma_{\text{BCTW}} = 6.55 * 1.23 / 1.58 = 5.10 \rightarrow \sigma_{\text{BCTW}} / \sigma_{\text{ICT}} = 1.02$
- Noise ratio on bunch integrals: $\sigma_{BCTW} / \sigma_{ICT} = 1.08$

1 GHz sampling

- Under investigation
- Several caveats
 - Standard VFC cards FPGA Arria V GX transceivers do not support necessary JESD204B data rate (> 6.5 GBit/s)
 - Replaced with similar pinout Arria V GT chip
 - The Altera Arria V JESD204B IP core does not support the necessary data rate (even for GT chip)
 - Transceivers can receive 10 GBit/s data stream
 - Write a simple limited JESD204B receiver
 - 1 out of 4 high speed differential lines is routed to transceiver banks which do not support > 6.5 GBit/s
 - Re-wire, PCB revision, FMC connector adapter, ...

Software

- Software under development
- Capable of pulling snapshot data without important impact on continuous measurements readout
- IRQ driven
- Database archival of the main data points that are necessary for the commissioning

Conclusion

- **Firmware** for beam intensity measurement using fast BCTs was **implemented**
 - Foundation for digital processing of BCT data on VFC cards for not only intensity measurements
 - "Outreach" to other projects (BLM, factory FW image, ...)
- Hardware was tested and evaluated
- Fist measurements were performed on 2015 pp and Pb-Pb fills at LHC and SPS
- Absolute calibration system under development
- Getting ready for the 2016 run and final commissioning

Credits

The boss: David Belohrad

Firmware: Jiri Kral

Software: Stephane Bart Pedersen

Special thanks to: Andrea Boccardi, Manoel Barros Marin

for the help with the VFC board

Michal Krupa, Marek Gasior

for the BCTW part

Backup

Channel crosstalk

- -80 dB measured (ADC -95 dB according to data sheet)
- Measured in amplitude domain
 - Repetitive pattern of signals simulating bunches injected in one channel, second channel terminated
 - Averaged measurement over ~130k turns
 - Observed induced amplitude

FFT

- FFT of sine wave injected into one channel
- Response clean

ADC linearity

LHC ICT BCTW noise comparison

- ICT installed on B1 (ch1), BCTW on B2 (ch0), 1 RF dist. LG channels used for ICT, FMC card #1, BCTW connected without RF dist.
 - Bandwidth limit for ICT is 60 MHz from RF dist., 150 MHz for BCTW
 - Correction factor 1.58 $N_{power}[dBm] = 20 \log(\sigma[V]) 10 \log(R) + 30$; R = 50 Ohm Presumed white noise \rightarrow proportional power to bandwidth
- Beam intensity measurement by the new device was correlated with B1/B2 ratio from DCCT TIMBER data to scale the unequal gains
 - Correction gain factor computed: BCTW * 1.23 / ICT = 1

- Distribution of raw ADC signal was obtained (without beam)
- Corrected $\sigma_{BCTW} = 6.55 * 1.23 / 1.58 = 5.10 \rightarrow \sigma_{BCTW} / \sigma_{ICT} = 1.02$
- Noise ratio on bunch integrals (same method): $\sigma_{\text{BCTW}}/\sigma_{\text{ICT}} = 1.08$

