









# A Geodetic Reference Frame for the Virgo Interferometer

<u>A. Paoli</u> - European Gravitational Observatory M. Marsella, C. Nardinocchi - Università di Roma "La Sapienza" L. Vittuari, A. Zanutta - Università di Bologna

IWAA 2016 – ESRF Grenoble, 3-7 October 2016

# OUTLINE

- Introduction: EGO and Gravitational Waves Network
- Surveying activities over years
- VRS network monumentation
- Establishment of VRS for Advanced Virgo
- Geographic Location of the detector
- 2011-16: Alignment Activities

A.Paoli - IWAA 2016 - ESRF Grenoble, 3-7 October 2016





The European Gravitational Observatory, site of the Virgo interferometer, is located in the countryside of the Comune of Cascina, a few kilometers from town of Pisa





### GENERAL RELATIVITY



#### GW 150914:FACTSHEET

(BOTTOM) IN THE TWO LIGO DETECTORS; SINULATION OF BLACK HOLE HOBITOM, IN THE TWO LIGO DETECTORS; SINULATION OF BLACK HOLE HOBITOM, (MIDDLE TOP), REST FIT WAVEFORM (MIDDLE ROTTOM)

| observed by<br>source type<br>date<br>time<br>distance | LIGO WA, LA<br>black hole (BH) binary<br>14 Sept 2015<br>09-50-45 UTC<br>1.3 Gly, 410 Mpc | errivel time delay<br>between WA and LA<br>signal to move rate<br>faise alarm prob.<br>faise alarm cate<br>coalescence rate | 7 ms<br>24<br>< 2 x 10 <sup>-7</sup><br>1 in 200,000 yr<br>2-800 Gpc <sup>-7</sup> yr <sup>-1</sup> |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| redshift                                               | 0.09                                                                                      | peak strain                                                                                                                 | 1 × 10 <sup>21</sup>                                                                                |  |
| Detector Frame Masses M.®                              |                                                                                           | peak displacement of                                                                                                        | D COA Council                                                                                       |  |
| tutal mass                                             | 70                                                                                        | Interferometers arms                                                                                                        | Salasin Plantin                                                                                     |  |
| chirpmass                                              | 30                                                                                        | proah amp, frequency                                                                                                        | 150 Hz                                                                                              |  |
| primary BH                                             | 39                                                                                        | peak speed of black                                                                                                         | - 0.8 c                                                                                             |  |
| secondary BH                                           | 31                                                                                        | hestos                                                                                                                      | TAN 1911 AND 1                                                                                      |  |
| remnant DH                                             | 67                                                                                        | tediated energy                                                                                                             | S.M. SX of man                                                                                      |  |
| Source Fram                                            | e Masses Mo                                                                               | The fille of the gy                                                                                                         | States Store and St                                                                                 |  |
| total mass                                             | 65                                                                                        | frequency                                                                                                                   | 250 Hz                                                                                              |  |
| chirpmass                                              | 28                                                                                        | remnant BH damping                                                                                                          |                                                                                                     |  |
| primary 8H                                             | 8.6                                                                                       | time                                                                                                                        | 4 ms                                                                                                |  |
| secondary BH                                           | 29                                                                                        | mass ratio                                                                                                                  | 0.8                                                                                                 |  |
| monant RH                                              | 62                                                                                        | duration from 30 Hz                                                                                                         | - 200 ms                                                                                            |  |
| primary BH spin                                        | < 0.7                                                                                     | # cycles from 30 Hz                                                                                                         | -10                                                                                                 |  |
| secondary BH spin                                      | < 0.9                                                                                     | consistent with                                                                                                             | Yus                                                                                                 |  |
| remnant BH spin                                        | 0.7                                                                                       | general relativity                                                                                                          | - 1 7 - 10 <sup>33</sup> -W                                                                         |  |
| pin in orbital plana                                   | - 0                                                                                       | graviten maar beend                                                                                                         |                                                                                                     |  |
| remnant size, area<br>orientation                      | 100 km, 3.5 x 10° km²<br>face-on/off                                                      | online trigger latency<br>offlero analysis pipelines i<br>CPU buors consumed                                                | a menutes<br>mand 5<br>- 50 mullions                                                                |  |
| sky location                                           | southern hemisphere                                                                       | popers on Feb 11, 2017                                                                                                      |                                                                                                     |  |
| resolved to                                            | 600 sq. deg.                                                                              | no of researchers                                                                                                           | -1000 in 16 countries                                                                               |  |

1<sup>st</sup> Detection - September 14, 2015 at 09:50:45 UTC Observation of Gravitational Waves from a Binary Black Hole Merger

2<sup>nd</sup> Detection - December 26, 2015 at 03:38:54 UTC



The era of gravitational wave astronomy has started!







GEO600 – Hannover - Germany



L1- Livingston – Louisiana State



SSU E/PO, Aurore Simonn

# SURVEYING ACTIVITIES OVER YEARS

Realization of civil engineering works: Experimental Buildings, Tunnels, Technical Buildings, Office Buildings, Roads, Bridges, Site Layout Works Main issue: realization of the 3+3km orthogonal tunnels with earth curvature correction



# SURVEYING ACTIVITIES OVER YEARS

- 1994-95: 1<sup>st</sup> levelling/GPS surveys of the Virgo Area
- 1998-99: Alignment of the central interferometer
- 2000-02: Alignment of the vacuum tubes and End Towers
- 2003-16: Monitoring of buildings/tunnel displacements
- 2011-16: Alignment of Advanced Virgo



# NETWORK MONUMENTATION

VRS (Virgo Reference System) network used for surveying activities developed over years and periodically checked and maintained



It includes ~500 internal main reference points, materialized with accurate centering system and monographed:

- ~80 located in 4 Experimental Buildings
- > 200 + 11 GPS in the North Tunnel
- > 200 + 11 GPS in the West Tunnel





External network made of ~30 concrete pillars distributed along the tunnels and at the experimental building areas





# VRS NETWORK SURVEY

2011-14: Installation, survey and establishment of VRS
Integrating TS measurements (red) with GNSS baselines (green)
Trimble GNSS receivers; Leica TM50 & TDA5000 + Wild NL plummet



#### VRS ESTABLISHMENT

5 GNSS stations – 3 session each lasting 24h processed separately (Bernese) - network solution including 10 permanent stations
 *3 solutions averaged both for the coordinates and the corresponding errors σ<sub>X</sub> σ<sub>Y</sub> σ<sub>Z</sub>*

#### • ~ 65 internal + 30 external stations TM50 (TDA5000)

- > 3 (pos.I) + 3 (pos.II) obs. each point
- Slope distance values corrected for the refraction taking into account the atmospheric parameters (T, p, RH) provided by EGO meteo station
- Azimuthal and Zenithal measurements corrected to refer them to the ERS (Eulerian Reference System) using formula of Brovelli M. et al. (1989)

#### ETRF Geocentric Cartesian Reference System

Appr. pos. O(x,y,z) ERS in correspondence of the center of Virgo interferometer

 $\phi_o, \lambda_o$  and  $(X_0, Y_0, Z_0)$  rotation angles and translation parameters  $ETRF \rightarrow ERS$ 



### VRS ESTABLISHMENT

- Network adjustment in ERS using both TS and GNSS observations; GNSS baselines used to constrain the network using the associated rms ( $\sigma_{\Delta x}$ ,  $\sigma_{\Delta y}$  1mm;  $\sigma_{\Delta z}$  2mm)
- Network adjustment performed using both the scientific software CALGE and the commercial software StarNet (MicroSurvey Inc.)
- ERS coordinates finally rototranslated to VRS (Virgo Reference System) oriented in accordance with the laser beam directions (X<sub>VRS</sub> = -West beam; Y<sub>VRS</sub> = North beam)

| Achieved accuracy of the computed VRS coordinates |                             |                   |                   |
|---------------------------------------------------|-----------------------------|-------------------|-------------------|
|                                                   | $\sigma_{\rm x}  [{ m mm}]$ | $\sigma_{y}$ [mm] | $\sigma_{z}$ [mm] |
| Average                                           | 0.91                        | 0.86              | 1.42              |
| St.Dev.                                           | 0.61                        | 0.52              | 1.05              |

# VRS ESTABLISHMENT – process scheme



 Estimation of the rotation angle between ERS and VRS

Estimation of the translation along x and y axis of the network towards the origin of the old reference system. The transformation parameters were calculated with a least square method on a set of five points (NV1-NV2-WV1-70-80) known both in the ERS and old VRS reference systems

Shift in the Z direction, calculated as the average of the differences between 70-80-NV1-NV2-WV1-108P point height, belonging to the Central Building and the corresponding heights determined by previous surveys.

### **GEOGRAPHIC LOCATION**

- Establishing VRS reference frame and the transformation parameters ETRF → VRS allowed the calculation of the position of the Virgo vertexes, i.e the centers of the suspended mirrors, not directly visible
- Coordinates calculated by the inverse transformation VRS → ETRF
- Geographic location and orientation of Advanced Virgo respect the other detectors are fundamental informations for the contemporary detection of GW signals

| Point ID | LAT                | LONG               | h (m)  |
|----------|--------------------|--------------------|--------|
| BS       | 43° 37' 53".1061 N | 10° 30' 16".2095 E | 53.089 |
| NE       | 43° 39' 24".9464 N | 10° 31' 00".8387 E | 52.899 |
| WE       | 43°38'25".4873 N   | 10° 28' 09".7533 E | 51.575 |





• Alignment of 5 new vacuum chambers "minitowers":

- > SIB2, SDB2, SPRB in Central Building
- > SNEB, SWEB in North and West End Building









Alignment of mirror suspensions:
> 7 "long" towers: BS, NI, WI, PR, SR, NE, WE
> 3 "short" towers: IT, DT, MC











Suspension wire

Standard filters



- Alignment of 7 in-air and 2 in-vacuum optical benches:
  - > Injection System: LB, IB, EIB
  - > Detection System: DB, EDB
  - > Thermal Compensation System: NI, WI, NE, WE











- Alignment of external references for ITF pre-commissioning activity:
  - > Central Building: PRF, NIF, SRF, WIF
  - » North End Building: NEF, SNEBF
  - > West End Building: WEF, SWEBF













- Local networks around the surveyed points, including max possible number of VRS benchmarks
- Observations of sD, H and Z of each point repeated 3 times in both pos.I + pos.II and averaged
- High redundancy of observations for the network adjustment
- Network adjustment performed using the commercial software StarNet (MicroSurvey Inc.)
- Most part of the coordinates obtained for the surveyed points with rms ( $\sigma_x$ ,  $\sigma_y$ ,  $\sigma_z$ )  $\leq$  0.2 mm

# ...THANKS for your attention

A.Paoli - IWAA 2016 - ESRF Grenoble, 3-7 October 2016

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Dipartimento di Ingegneria civile. Chimica. Ambientale e dei materiali









# SPARE SLIDES



# MONITORING SOIL SETTLEMENTS AT THE VIRGO SITE

# MONITORING of BUILDINGS

Since the end of the construction a significant subsidence of the tunnels was observed The interferometer must be in a plane Virgo and its vacuum tubes are designed for re-alignment of the modules

Our reference is the Central Building (CB) Relative displacements for both the tunnel ref. pts. (H) and the GPS pts. (plan.)

Accurate levelings: 205 stations/tunnel 15m distance between each station and 7.5m for the staff Not big variation of T and RH Tunnel are not ventilated



| Period    | Frequency of monitoring | Instrument      |
|-----------|-------------------------|-----------------|
| 2001      | Initial survey          | TDA5000         |
| 2002÷2006 | 6 months                | NA2+GPM3; DNA03 |
| 2007÷2011 | 12 months               | DNA03           |
| 2012÷2015 | 24 months               | DNA03           |

# TUNNEL MONITORING

#### Leveling parameters

| L [m]                     | 3006/line                                                     |
|---------------------------|---------------------------------------------------------------|
| method (NA2)              | NV1(WV1)→N206 (W206); N206→NV1                                |
| method (DNA03)            | BF NV1(WV1) $\rightarrow$ N206 (W206); N206 $\rightarrow$ NV1 |
| method (DNA03)            | BFFB, aBFFB                                                   |
| n. stations               | 205/line                                                      |
| starting point            | NV1 (WV1), N206 (W206)                                        |
| measure type              | Avg 3 of 5; chk $\sigma/20m < 0.00005 m$                      |
| tolerances                | St > 0.5m; DBal < 0.5 m; Dmax 8m                              |
| max closure error (NA2)   | 4.42 mm                                                       |
| min closure error (NA2)   | 3.76 mm                                                       |
| max closure error (DNA03) | 0.98 mm                                                       |
| min closure error (DNA03) | 0.04 mm                                                       |



| TIETODO I | al harselen |
|-----------|-------------|
| nodo :    |             |
| n mint    |             |
|           |             |
| AF UNEX   |             |



# TUNNEL MONITORING North Tunnel



# TUNNEL MONITORING West Tunnel



# **TUNNEL MONITORING** Trendlines for the major displacements observed

 $y = m1^*x/(m2+x)$ 

Value

263.08

3.9333

70.999

0.99725

 $y = m1^{x}/(m2+x)$ 

Value

240.83

5.5361

44.475

0.99897

 $y = m1^*x/(m2+x)$ Value

206.53

42.082

0.9988

3.63

Error

NA

NA

1.6525

0.06823

R2

R

R





No big problem: settlements compatible with the realignment system (...and the roof of the tunnel!)



Left curves more coherent with geotechnical studies available in literature

Hypothesis with constant external factors (i.e. no large variations of the water deep stratum height or loading of the adjoining soil)

NA

NA

NA

NA



# FUTURE GRAVITATIONAL WAVES PROJECT

#### GEODESY & METROLOGY for FUTURE PROJECTS Einstein Telescope











### EINSTEIN TELESCOPE Conceptual Design Main features and infrastructure facilities

- 3 nested detectors arranged in a triangular shape with 10 km side
- from 100m to 200m depth underground (hopefully > 200m?)
- Xylophone scheme up to 6 folded interferometer
- 3 interferometer for Low frequency 3 for High frequency
- LF interferometer  $\rightarrow$  cryogenic test masses
- HF interferometer  $\rightarrow$  high power laser
- 3 underground corner caverns (Ø 65m, H 30m) and 6 satellite caverns (Ø 30m, H 30m)
- Tunnel inner Ø 5.5÷6.0m; double tunnel (300m) linking corner and satellite caverns
- Surface facilities and vertical shafts (in relation to the site location)

# EINSTEIN TELESCOPE

Scheme of LF and HF core interferometers of a single ET detector



|      | Virgo                   | AdV                            | aLIGO                 | ET                |
|------|-------------------------|--------------------------------|-----------------------|-------------------|
| 1985 | R&D                     |                                |                       |                   |
|      |                         |                                |                       |                   |
| 1990 | White Paper, CDR (1989) | )                              |                       |                   |
|      | R&D                     |                                |                       |                   |
|      | Approval (1994)         |                                | R&D                   |                   |
| 1995 | Final Design, TDR (1995 | )                              |                       |                   |
|      | Infrastructure (1996)   |                                |                       |                   |
| 2000 |                         | R&D                            | CDR (1999)            |                   |
|      | Completion installation | First AdV                      | D & D                 |                   |
|      | Delector (2003)         | sensitivity projection (2004)  |                       |                   |
| 2005 | Scientific data taking  | AdV White Paper, CDR (2005     | )<br>Funding (2006)   | First Idea (2005) |
|      | (2007)                  | Approval (2009)                | Building (2008)       | R&D               |
| 2010 | Decommissioning (2011)  | First orders (2010)            |                       | CDR (2011)        |
|      |                         | TDR (2012)                     | Installing completion |                   |
| 2015 |                         | Completion Installation (2015) | (2014)                | R&D               |
| 2013 |                         | First data taking (2016)       | Data taking (2015)    |                   |
|      |                         |                                |                       |                   |
| 2020 |                         |                                |                       | TDR ?             |
|      |                         |                                |                       |                   |
| 2025 |                         |                                |                       | Construction ?    |
|      |                         |                                |                       | 3                 |

# EINSTEIN TELESCOPE ...thinking to the start of the Tech Design

- Design of surface and underground Reference Network
- *Materialization of the reference points network*
- Definition of specifications and planning for surveys and monitorings
- Transfer of the surface network to underground: technologies, study and design
- *"Fiducialisation" and optimization of the reference point network; design for the different components of the LF and HF interferometers*
- Integration of the fiducials in the mechanics, vacuum and optics
- .....and many other topics!