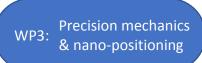
Recent development of micro-triangulation for magnet fiducialisation

Vasileios Vlachakis

"In the Beginning was the..."

a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale


an Innovative Doctoral Program, hosted by

providing training to 10 Early Stage Researchers.

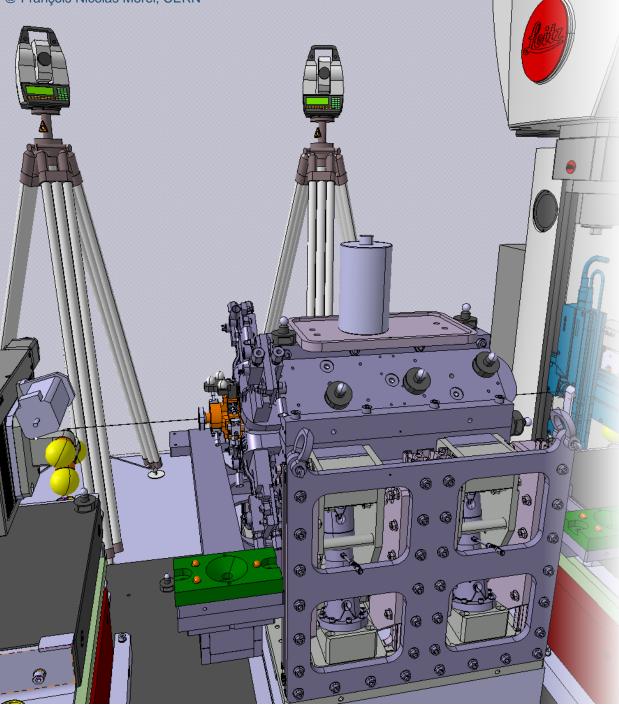
WP2: Magnetic Measurements

WP4: Microwave Technology

Outline

Objectives

Measuring system


Developments

Measurement bench

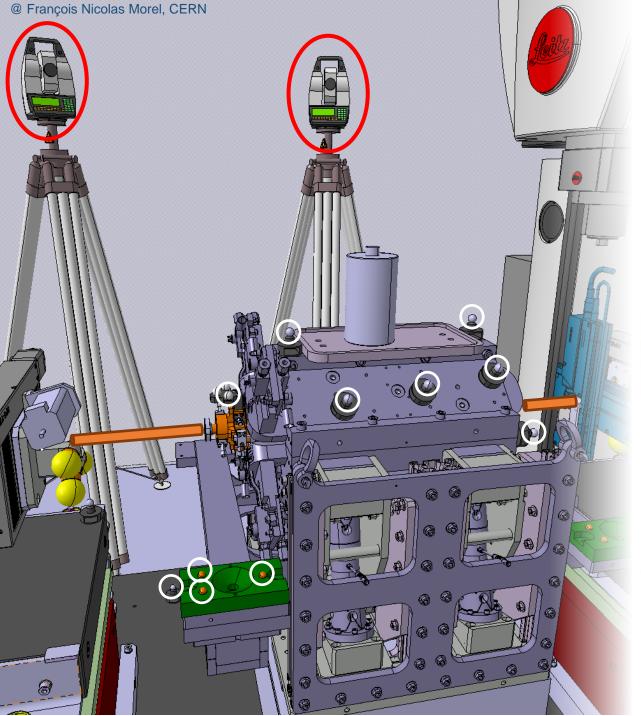
Preliminary results

Conclusion & Outlook

0

To link the fiducials with the wire, in geometric sense.

- Mechanical axis \rightarrow fiducials
- Magnetic axis
- Electric axis
- stretched wire



To measure the fiducials and the wire using theodolites.

 Observations → angles (horizontal, vertical)

- Leica TDA5005 theodolite.
- QDaedalus measuring system.
- Computer vision techniques.
- Least-squares analysis.

Leica TDA5005:

- Robotic theodolite.
- High accuracy:

0.5 arcsec / 2.4 $\frac{\mu m}{m}$

Ceramic spheres:

- Ø 12.7 mm / Ø 8 mm
- Grade 40 (sphericity 1 μm)

Copper-Beryllium (CuBe) wire:

Ø 100 μm / Ø 125 μm

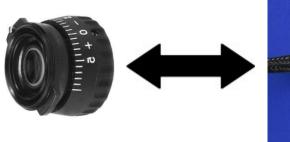
Main features of micro-triangulation

③ Advantages:

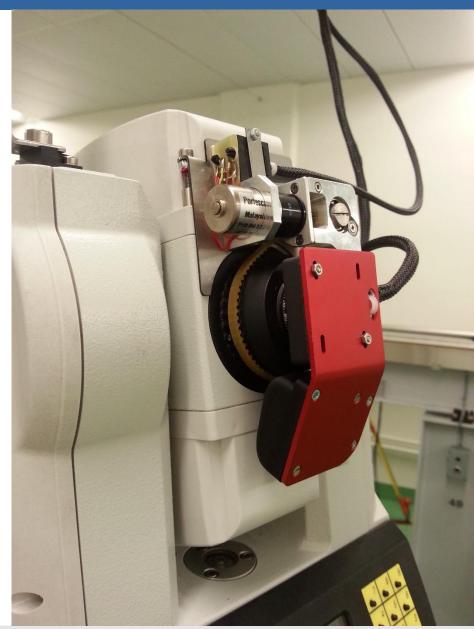
- Accurate a few micrometers
- Automatic no need for observers
- Contactless ideal for stretched wires
- Remote-controlled \approx 7 m meters in cable, ∞ on-line
- Fast a series (network) in < 10 min
- Portable a few boxes...

Bisadvantage:

• The scale: should be introduced as constraint



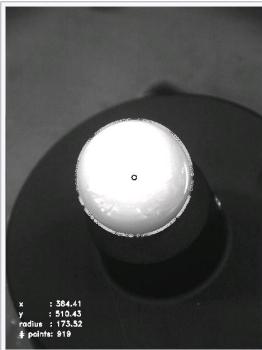
Measuring system

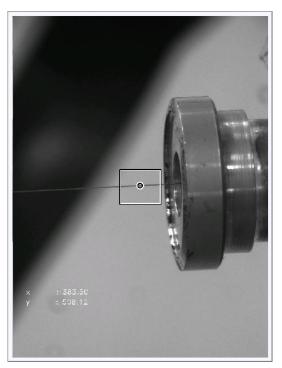

QDaedalus – hardware

- The system is developed at **ETH**zürich.
- Based on industrial robotic theodolites.
- **Principle**: reversible replacement

More info: B. Bürki et al., "DAEDALUS: A versatile usable digital clip-on measuring system for Total Stations", in IPIN2010, Zurich, Switzerland, 2010.

QDaedalus – software


Based on Open Source Software:



Optical Target Recognition algorithms:

- Template least-squares matching
- Circle matching
- Line matching (developed in PACMAN)

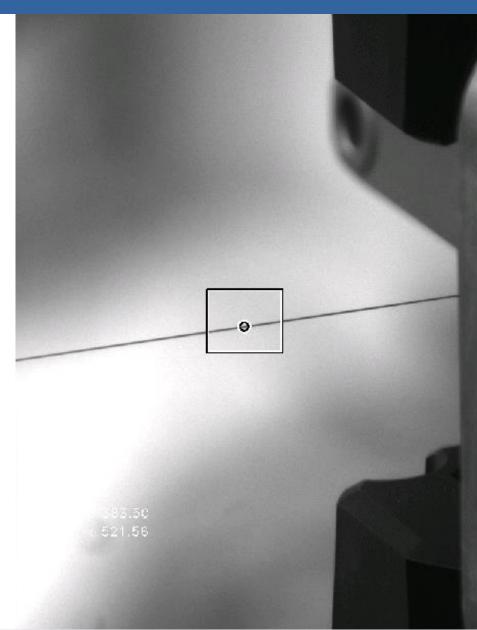
More info: S. Guillaume et al., "QDaedalus: Augmentation of Total Stations by CCD Sensor for Automated Contactless High-Precision Metrology", in FIG Working Week 2012, Rome, Italy, 2012.

Developments

Aim: To measure the targets (fiducials) and the stretched wire in a <u>one coordinate system.</u>

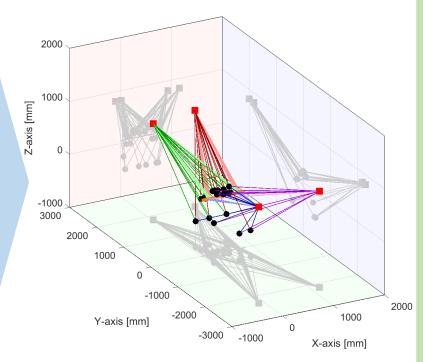
 Development and validation of an algorithm to detect and measure the stretched wire.

 Development and validation of a method to integrate the stretched wire into a geodetic network.


 Development and validation of a software to solve and simulate the integrated geodetic network.

Wire detection and measurement

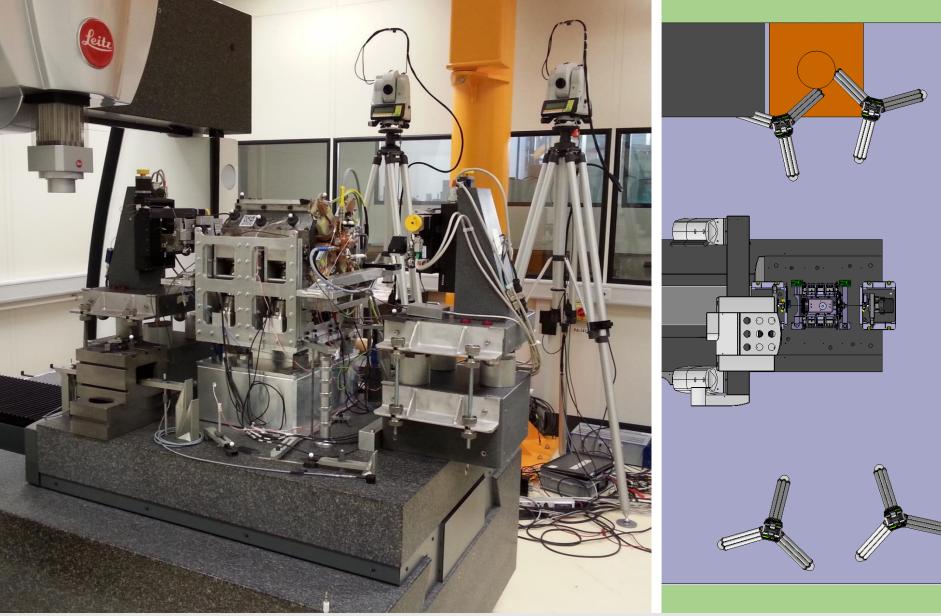
• The algorithm is developed in:


- Based on edge detection.
- User defined parameters:
 - **1.** Minimum number of edge points
 - 2. Region Of Interest (ROI) width
 - 3. Region Of Interest (ROI) height
 - 4. Maximum residual
 - 5. Canny threshold

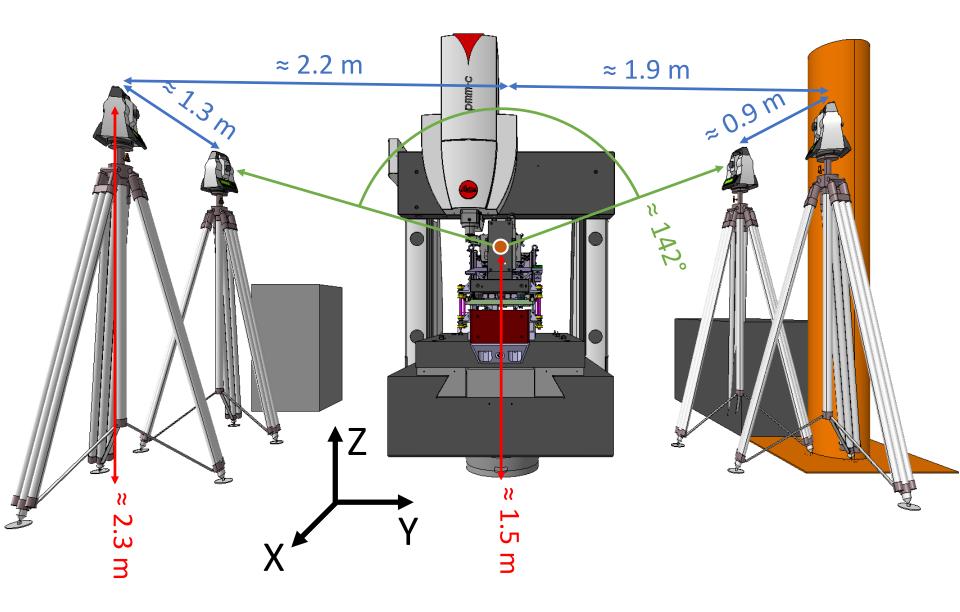
Least-squares analysis software

Input:

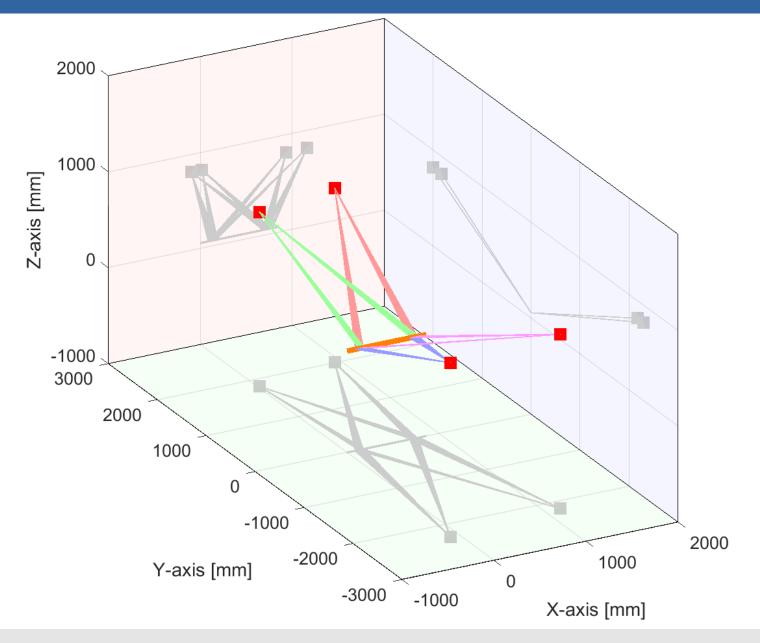
- horizontal and vertical angles to targets and wires (with uncertainties).
- Approximate coordinates of the network (with uncertainties).
- datum constraints.
- user parameters.

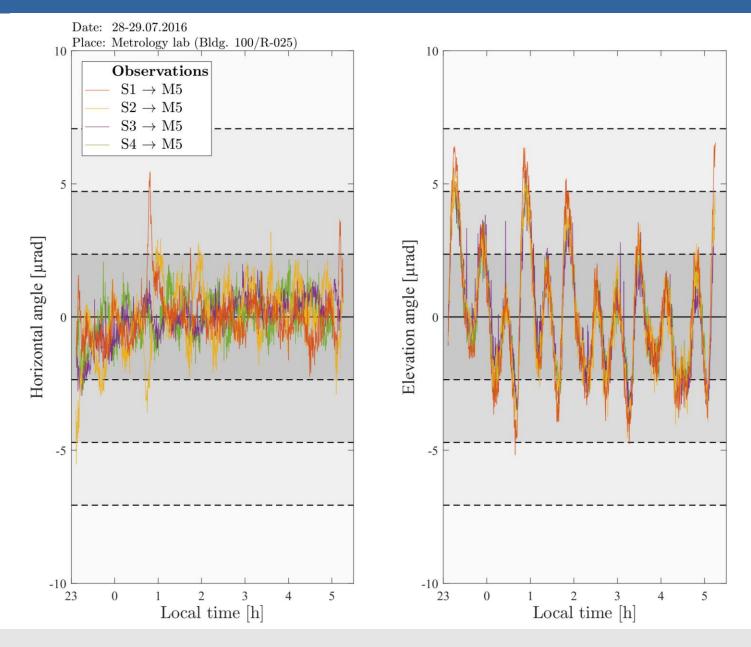


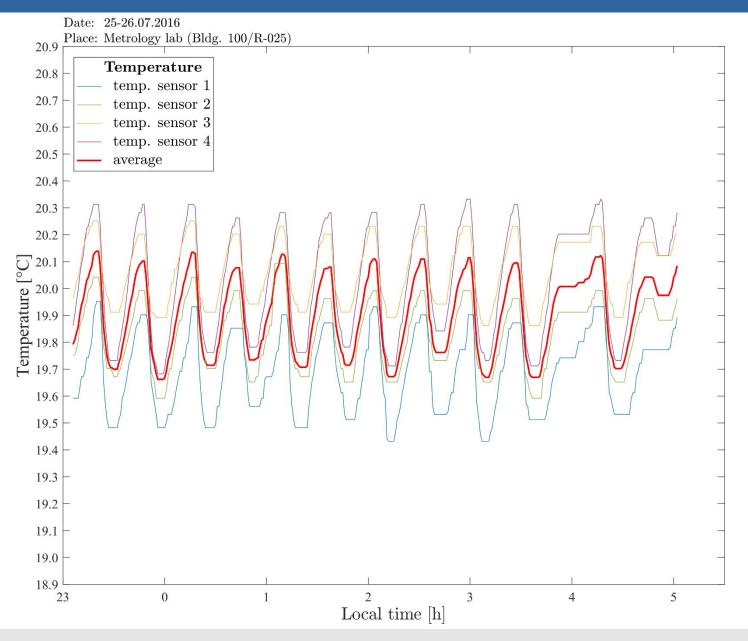
Output:

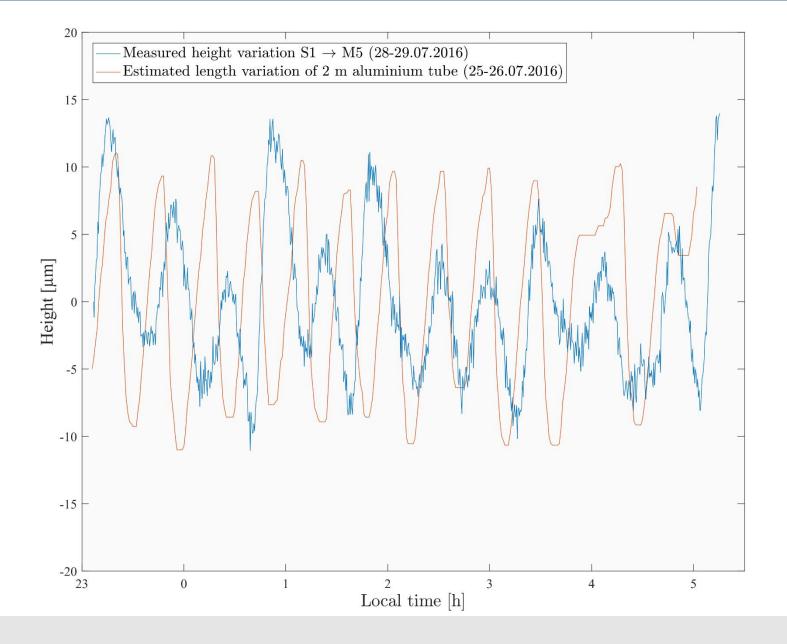

- stations:
 coordinates,
 orientations, and 3
 systematic errors
 per instrument.
- targets: coordinates.
- wires: position, orientation and coordinates of the observed points.
- > uncertainties.

Measurement bench

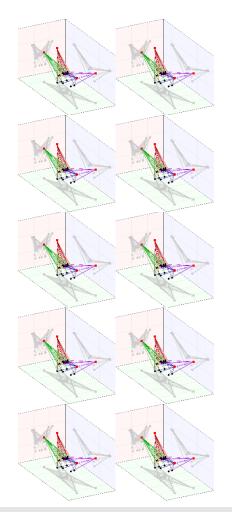

PACMAN test bench in the Metrology room


Poor network geometry

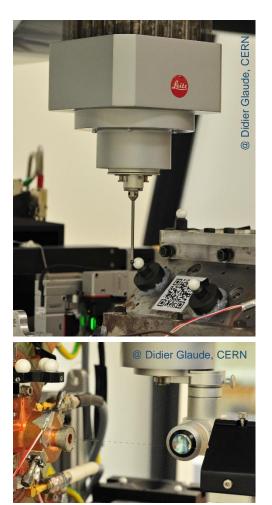

Poor network geometry


Thermal effect on the tripods

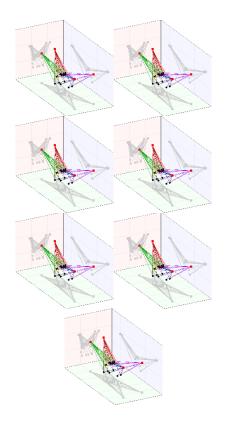
Thermal effect on the tripods


Thermal effect on the tripods

Measurement campaign


1st period of QDaedalus:

- 10 network measurements
- ≈ 5:30 7:20 (≈ 10 min each)


Leitz Infinity measurement:

- Tactile & Contactless
- ≈ 7:30 14:00

2nd period of QDaedalus:

- 7 network measurements
- ≈ 14:50 16:30 (≈ 10 min each)

Preliminary results

Evaluation of precision

	\mathbf{X}^{1}	\mathbf{Y}^{1}	\mathbf{Z}^{1}	\mathbf{X}^2	Y^2	\mathbf{Z}^2
	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]
Poin	ts on the	e magnet				
M 1	2	6	2	2	4	3
M2	1	5	3	3	3	3
M3	1	5	2	3	5	3
M4	_*	_*	_*	_*	_*	_*
M5	_*	_*	2	_*	_*	3
M6	1	6	2	2	7	2
M7	1	5	2	2	9	2
M8	1	5	3	2	6	2
Points on the WPS support plates						
P1	3	6	2	5	9	2
P2	4	6	2	6	9	2
P3	3	5	2	5	7	2
P4	2	6	2	4	9	2
P5	2	4	1	5	5	1
P6	2	2	2	5	5	3
Points on the CMM granite table						
T1	3	7	3	10	8	3
T2	5	5	3	12	6	3
T3	6	6	3	9	9	4
T4	4	4	2	9	5	5
T5	4	5	2	6	3	6
T6	5	6	3	9	8	5

	\mathbf{X}^{1}	\mathbf{Y}^{1}	\mathbf{Z}^{1}	\mathbf{X}^2	\mathbf{Y}^2	\mathbf{Z}^2
	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]
Poin	t on the	wire				
WP	_*	3	2	_*	3	1
	[µm/m]	[µm/m]	[µm/m]	[µm/m]	[µm/m]	[µm/m]
Direction vector of the wire						
WV	_*	12	2	_*	27	1

* Constraint

1 Standard deviation of 10 QDaedalus measurements, 1st period: 5:30-7:20

2 Standard deviation of 7 QDaedalus measurements, 2nd period: 14:50-16:30

<u>1st period</u>	2 nd period
100% < 8 μm	80% < 8 μm
76% < 5 μm	58% < 5 μm

Evaluation of accuracy

	$X^0 - X^1$	$Y^0 - Y^1$	$Z^0 - Z^1$	$X^0 - X^2$	$Y^0 - Y^2$	$Z^0 - Z^2$
	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]
Poi	nts on the	e magnet	t			
M 1	7	-20	-9	7	-13	-7
M2	5	-16	-11	4	-15	-9
M3	3	-9	-10	0	-5	-7
M4	2	-6	-19	4	-4	-16
M5	-4	10	-19	-4	4	-17
M6	1	3	-11	3	-2	-14
M7	0	27	-2	0	25	0
M 8	0	10	-6	1	11	-7
Points on the WPS support plates						
P1	1	6	8	2	6	7
P2	5	-5	-1	5	-6	-1
P3	1	8	-2	2	7	-3
P4	2	0	5	2	-1	7
P5	1	15	9	2	15	11
P6	0	7	15	1	9	18
Points on the CMM granite table						
T 1	-3	-26	16	-8	-17	11
T2	-10	-2	1	-10	2	-4
Т3	-7	-17	11	-4	-20	12
T4	2	9	15	1	7	11
T5	0	10	12	-4	7	11
T6	-5	-5	-3	-5	-10	-3

	$X^0 - X^1$	$Y^0 - Y^1$	\mathbf{Z}^0 - \mathbf{Z}^1	$X^0 - X^2$	$Y^0 - Y^2$	$Z^0 - Z^2$
	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]
Poir	nts on the	e wire				
WP	_*	-17	-15	_*	-17	-14
	[µm/m]	[µm/m]	[µm/m]	[µm/m]	[µm/m]	[µm/m]
Dire		[µm/m] ctor of th		[µm/m]	[µm/m]	[µm/m]
Dire WV				[µm/m] _*	[µm/m] -30	[μm/m] -46

* Constraint

0 CMM measurement: 7:30 - 14:00

1 Average of 10 QDaedalus measurements 1st period: 5:30-7:20

2 Average of 7 QDaedalus measurements 2nd period: 14:50-16:30

<u>1st period</u>	2 nd period
85% < 15 μm	90% < 15 μm
70% < 10 μm	73% < 10 μm
40% < 5 μm	45% < 5 μm

Conclusion & Outlook

- Micro-triangulation can be used for magnet fiducialisation.
 - Advantages: accurate, automatic, contactless, remote-controlled, fast, portable.
 - Disadvantage: Lack of scale.

- 1st validation test (realistic scenario, no optimisation) preliminary results:
 - > Precision (1 σ) fiducials: < 10 μ m, wire orientation \approx 20 μ m/m.
 - Accuracy fiducials: \approx 15 µm, wire orientation \approx 50 µm/m.

- New measurements are scheduled for the near future.
 - Geometry optimisation, lower setup for the theodolites.

