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Abstract

A new version of LGC (Logiciel Général de Compen-
sation!) has been developed over the last few years. A
completely different functional model and an improved
stochastic model have been implemented, and the soft-
ware has entirely been rewritten. New observation types
have been developed to respond to new requirements
such as: unlevelled” stations making polar measurements;
more flexibility when processing offset observations (lines
and planes introduced); and processing camera sensors
(BCAM). For a new accelerator line monitoring system
a way to define assemblies of objects has also be imple-
mented.

The stochastic model has also been modified to allow
a better breakdown and parametrization of the instrument
and observation errors; and a better error propagation by
means of weighted unknown parameters (coordinates and
transformation parameters). Special care has been taken
testing the program. Unit and functionality tests have been
added to assure future development, and an in depth com-
parison with the previous version has been made.

Furthermore, the calculation structure has also been de-
signed to allow new processing modules, such as a pre-
processing model to calculate initial coordinate values, to
be added more easily.

This paper will give an overview of the new software.

INTRODUCTION

In the last decade, new equipments and sensors were
integrated at CERN so as to allow a larger field of ap-
plications and measurements, such as the unlevelled po-
lar measurement with the laser tracker or the use of Bran-
deis CCD angle Monitor (BCAM) in usual measurement
field. New accelerator lines request an increasing amount
of monitoring system, with more material and assembly
constraints. The HIE-ISOLDE project illustrates this new
request. BCAMs are installed in a complex hierarchy of ta-
bles to be able to measure points inside cryo-modules. The
LGC program was rewritten to include this new instrument
as well as unlevelled polar measurement , define objects
instead of points, and answer new network constraints [1].

General processing of the observed measurements through a least
squares algorithm
2unlevelled: not linked to the gravity

NEW OBSERVATIONS
UVEC and UVD: Measurements by camera

For the new monitoring systems, such as HIE-ISOLDE,
non-typical geodetic instruments and sensors are used for
the positioning. A BCAM makes observations to one or
more light sources on another BCAM. Alternatively it can
also measure on glass balls [2].

As shown in the Fig. 1, the initial BCAM measurement is
the position of the measured target on the CCD (dx and dy),
which is transformed on a unit vector, u, with u = (%, j, k)
representing the direction of the measurement. To express
the BCAM observation,

- UVD, Unit Vector with a distance (see equation 1.)
and

- UVEC, Unit VECtor (see equation 2.), as a simplifi-
cation of UVD

have been defined.
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Figure 1: BCAM representation
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Where s is the distance between the lens of the BCAM
(considered as a station measuring) and the target.

Usually, cameras are not linked to the gravity and are in-
stalled on metrological plates. This installation is described
by a free-rotation frame known in the superior frame (the
frame will be described in the next section).



PLR3D: Polar measurements from unlevelled
stations

A new way to treat laser trackers has been introduced.
The instrument can now be used without gravity connec-
tion. The instrument orientation, described by the rotation
matrix RzRyRx in equation 3, can be redetermined with
the observations. An option keyword in the input file al-
lows to define whether the rotation matrix is known, hence
to define if the instrument is levelled. Moreover, the dis-
tance and angle measurements are linked to model better
the measurement interactions.
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Figure 2: PLR3D instrument
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Due to the measurement dependencies, the equations are
not linear, so the least square process must use the com-
bined case, also known as Gauss Markov approach [3].

Other observation improvements

Some observations have been rewritten using a refer-
ence object such as a plane or a line. Levelling mea-
surements are calculated according to an average plane;
ECHO, ECVE, ECSP or ECTH, (specific offset measure-
ments made at CERN for the alignment campaign), are also
calculated according to an average line or plane.

In the previous version [4], the plane or the line were
defined with known points for the offset measurements, and
the medium plane did not exist for levelling measurements.
Now, every object is initially defined as the mean of every
respective set of measurements. During the least square
process, these objects are also re-determined. Some of the
parameters are fixed, others are variable.

Taking one example to illustrate the standard, ECHO
(offset measurement respect to a vertical plane, ec, see
Fig. 3): the plane, p, is defined by a normal vector, n, and a
reference point, RE'F', on the plane. The plane is vertical,
so there is only its orientation in XY plan to determine (an-
gle a in equation 4). The reference point , which is initial-
ized as the mean of all stations coordinates, allows fixing
the plan in an area around the stations and is considered
as a fixed point. The stations at the extremities are used
to predetermine the orientation, which will be balanced by
least square.

ec = —cosa- (Xg—Xpey)+sina-(Ys—Yges) —Cec (4)
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Figure 3: ECHO measurement representation shown in the
XY plane

Parametrization of instrument and observation
errors

In the previous version, the stochastic model use fixed
parameters, except the standard deviation of the measure-
ment, which was dynamic. Now, more parameters can be
dynamically set. A single standard deviation is recalcu-
lating, for these parameters, using the law of standard de-
viation propagation to fill the weight matrix. The law of
standard deviation propagation affords to take into account
more parameters to define the instruments and the observa-
tion error with better accuracy.
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of =Y (5-)07 5)

Where:
x,; — Parameters with their standard deviation o;.
o) — Standard deviation of the observation.



The main used parameters are, as before, the standard
deviation of the measurement, distance correction, ppm,
and new parameters as the standard deviation of target and
station centering.

MANAGE COMPLEX NETWORK
ASSEMBLIES

Data structure

Points and transformations representation was changed
to simplify the computation. Homogenous coordinates are
used.

The classic point coordinates are * = (x,¥, z). In ho-
mogeneous coordinates, the coordinates becomes zh =
(z,y, z, 1), where the last component is a scale factor, usu-
ally used for 3D representation in software to manage the
perspective.

The Helmert transformation is simplified by a simple
matrix multiplication (see equation 10.), instead of a ma-
trix multiplication, R;(w, ¢, k), a vector addition, T3, and a
scale factor, [;.

Applying n transformations to a point, z¢, the old equa-
tion was:
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Now, it is simplified by:
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Furthermore, transformations used at CERN have been
rewritten using this new way of point and transforma-
tion representation: CCS (CERN Coordinate System) to
CGRF (CERN Geodetic Reference Frame), CGRF to Local
Geodetic (LG), Local Astronomic (LA) or Modified Local
Astronomic (MLA).

Frame

A frame section is a logical block which can contain
points, measurements and further frames. A frame is for
example useful to group points that can only move together.
Such a set of points must be declared using CALA inside
the frame declaration to achieve a moving point group.

A frame is defined by three translations, three rotations
and a scale factor relative to its parent frame. The trans-
formation into the specified frame is done using the trans-
formation matrix with homogeneous coordinates. The ro-
tation matrix used has form Rxyz = Rz - Ry - Rz, i.e.
firstly rotation around Z-axis is applied, followed by a ro-
tation around Y-axis, and ending with a rotation around the
X-axis.

Moreover, points and frame parameters can be now
weighted, using standard deviation to define them.

HIE-ISOLDE, an example of complex use.

The HIE-ISOLDE monitoring project was one driving
force to implement new LGC functionnalities. The mon-
itoring system is based on BCAM measurements. These
instruments are mounted on a complex assembly of metro-
logical plates and tables. In the LGC input file, the as-
sembly is represented by some frames, and the BCAM, by
UVD measurements. Fig. 4 shows the complex structure of
the assembly.
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Figure 4: scheme of HIE-ISOLDE assembly

The monitoring system is composed of tables oriented
according to the beam system. Each table has four metro-
logic elements providing the position of the BCAM on the
table’s reference system. Then another system is added de-
scribing the position of the CCD in the BCAM and having
the measurement direction according to the Z-axis of the
BCAM system. Each BCAM measures points in the cryo-
module and on his front BCAM. Inside the cryo-module,
there is a hierarchy of frames describing the position of the
target compared to main elements.

The LGC input file, Fig. 5, is a text file describing a list
of information. Some keywords are used to define the type
of data to read and store in the software core. In the header



HEADER

Calculation and output options

TABLE 1

}_

Metrologic plate and BCAM orientation

} Points on the BCAM frame

—  Measurements made by the BCAM2

Figure 5: example of a LGC input file for BCAM

part, shown in red in Fig. 5, some keywords set the calcula-
tion and the output format. Then the network is described
with the point list and the frames shown in blue, orange
and green rectangles in Fig. 5. Measurements are written
at their network position (in the frame if the instrument is
defined inside) ending the file. The file format has not been
completely modified, only the frame and the new measure-
ments change the structure.

STOCHASTIC MODEL

In the previous version, all the observations were linear,
no weight could describe the unknowns accuracy. Then
only the parametric least square solution was used. In the
new version, some non linear equations have been imple-
mented, and a new functionality to constrain better the un-
known accuracy is used. To solve the new observations
and the new data structure, new least square solutions have
been implemented.

Combined case

The combined case is used for non linear equations, here
PLR3D and UVD require this case.
The equation to solve is:

F(X,L)=0 an
After linearization, the previous equation can be written:
W+ AX +BV =0 12)

where:

- X is the unknown vector,
- V is the residual vector,

- A is the first design matrix (partial derivative respect
to the unknowns),

- B is the second design matrix (partial derivative re-
spect to the observed parameters) and

- W is the misclosure vector.

Or in the hyper matrix form:

P BT 0\ [V 0
B 0 Al|l[K]|+[wW]=0 (13)
0 AT o) \x 0

Using Lagrange’s method, the solution vectors are:

X =—ATBP BT tA) AT (BP BT 'w

(14)
K = (BP'BT)"Y(AX + W) (15)
V=-P'BTK (16)

Weighted unknowns

In this case, a system with an uncertainty on the un-
knowns can be solved. In LGC, the weighted unknowns
are the coordinates and the frame parameters.

Two weight matrices should be defined. One for the ob-
servations (FP,, which correspond to the P matrix is the



other least square solution) and another for the unknowns
(Py).

F(X,L)=0 a7
with
P, 0
pP= ( 0 Pm> (18)
In the hyper matrix form, P, may be singular.

P, BT 0\ [V 0
B 0 A K|+{W]=0 19)

0 AT pP,) \X 0

The solution vectors are:

X = —(P+AT(BPIBT) 1 A) AT (BP BT tw

) A (20)
K = (BP;'BT)"Y(AX + W) 1)
V =-P 'BTK (22)

CONCLUSION

The new version of LGC is a command line software, for
which unit tests and comparison with the previous version
have been developed as well. The use of the software for
HIE-ISOLDE monitoring confirms the promising results.
In a near future, a Graphical User Interface is being con-
sidered so that the user can easily visualize results. The
graphical representation becomes the next priority, simpli-
fying the frames representation, and improving the way of
browsing results with a system of filters.

The new version of LGC was developed because of new
measurement technologies used at CERN, and to better an-
swer to the future precision request in the accelerator po-
sitioning. The new functionalities of the software allow a
larger field of use, as for the monitoring.
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