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Concept
 Variance reduction techniques in Monte Carlo calculations reduce 

the computer time or the opposite to obtain results of sufficient 
precision in the phase-space region of interest.

 Remember: that precision is not the only requirement for a Good 
Monte Carlo calculation. Even a zero variance calculation cannot 
accurately predict natural behavior if other sources of error are 
not minimized.

No Bias and no maze Region Biasing + maze

n
/
c
m

2
/
7

 1
0

1
2
p



 Visual inspection of histograms (specially 2D maps) is a 
powerful way to determine if simulations have NOT
converged in the area of interest. Big fluctuation in 
colors between neighboring voxels warn of potential 
systematic errors.

 However, even in smooth 2D histograms lack of 
convergence may be present, e.g.:

 If the scoring scale spans over many orders of magnitude 
significant differences may are hard to spot

 2-step simulations may give a false sense of convergence if first 
step has not converged but 2nd step has. Plot also maps for the 
1st step!

 Relatively smooth maps may have some ‘hard’-tracks overlaid 
typically indicating strong energy dependent weight dispersion 
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Is optimization necessary?



Monte Carlo Flavors
Microscopic

Analog
Microscopic

Biased
Macroscopic

Analog

Physics Models Theoretical Theoretical Parameterizations

PDF sampling Physical 
processes

Artificial 
distributions

Fits & Data

Predict Average Yes Yes Yes

Predict Higher Moments Yes - -

Preserves Correlations Yes - -

Reproduces Fluctuations Yes - -

Rare events - Yes -

Predictability Yes Yes -

Convergence Slow Fast privileged
regions

Fast

Safe Yes Almost -
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Analog vs. Biased - 1

Analog Monte Carlo

• samples from actual phase space distributions
• predicts average quantities and all statistical moments of any order
• preserves correlations and reproduces fluctuations (provided the  

physics is correct…)
• is (almost) safe and can (sometimes) be used as “black box” 

BUT

• is inefficient and converges very slowly
• fails to predict important contributions due to rare events
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Analog vs. Biased - 2

Biased Monte Carlo

• samples from artificial distributions and applies a weight to the   
particles to correct for the bias

• predicts average quantities, but not the higher moments
(on the contrary, its goal is to minimize the second moment)

• same mean with smaller variance, i.e., faster convergence

BUT

• cannot reproduce correlations and fluctuations
• requires physical judgment, experience and a good understanding of 

the problem (it is not a “black box”!)
• in general, a user does not get the definitive result after the first  

run, but needs to do a series of test runs in order to optimize the  
biasing parameters

balance between user’s time and CPU time
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Figure of Merit

 Computer cost of an estimator

FOM = s2  t

s2 = Variance  1/N,   t = CPU time  N

 some biasing techniques are aiming at reducing the s2, others at 
reducing t

 often reducing s2 increase t, and vice versa

 therefore, minimizing s2  t means to reduce s at a faster rate 
than t increases, or vice versa

  the choice depends on the problem, and sometimes a 
combination of several techniques is most effective

 bad judgment, or excessive “forcing” on one of the two variables, 
can have catastrophic consequences on the other one, making 
computer cost “explode”



Optimization consists in focusing CPU use 
towards the area of interest so that 
statistical error is reduced with minimal 

to no increase of systematic errors
Several types of optimization…

No biasing: no/insignificant systematic error, preserves correlations

Code & optimization: e.g. less use of memory: use 2D USRBIN in 
stead of 3D, read data at initialization, …

Geometry optimization: Choice of body types, definition of 
geometry logics, number of neighboring regions (avoid 
NAS>>), avoid unnecessary/excessive transformation 
directives 

Scoring/transport choice: energy deposition or fluence, *single 
scattering vs. multiple scattering, run-time processing

Biasing M1: Energy thresholds, blackhole outside of region of 
interest, detail of geometry, number of processes considered 
(e.g. neglect photonuc for hadron beams), granularity of scoring 
histograms…

Biasing Mn (n>1): Importance biasing, LAM-BIAS, EMF-BIAS
8

Optimization strategies and cost
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Biasing Techniques

FLUKA offers the following possibilities for biasing

 Importance Biasing (BIASING)

 Weight window (WW-FACTOr, WW-THRESh, WW-PROFIle)

 Leading Particle Biasing (EMF-BIAS)

 Multiplicity Tuning (BIASING)

 Biased down scattering for neutrons, only for experts (LOW-DOWN)

 Non analogue absorption (LOW-BIAS)

 Biasing Mean free paths (LAM-BIAS)

 User defined biasing (usbset.f, usimbs.f)

Other optimization checks

 CPU intensive consuming physics options and uses
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User written biasing

FLUKA offers the following routines for user-written biasing

 ubsset.f: User BiaSing SETting

 called after reading in the input file and before the first event

 allows to alter almost any biasing weight on a region-dependent basis

 usimbs.f: USer defined IMportance BiaSing

 if activated, called at every particle step

 allows to implement any importance biasing scheme based on region number 
and/or phase space coordinates

 udcdrl.f: User defined DeCay DiRection biasing and Lambda

 only for neutrinos emitted in decays: bias the direction of emitted neutrino

Not biasing by itself, but it could be used for generating biased runs

 source.f: User written source

 to sample primary particle properties from distribution in space, energy, 
time…
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Summary Biasing Techniques

BIASING
IMPORTANCE

MULTIPLICITY (had)

EMF-BIAS
LPB (EMF)

INTERACTION LENGTH (e+/-)

LAM-BIAS (not e+/-)

LOW-BIAS (le n)

USIMBS.f
N-step methods

(MGDRAW.f – SOURCE.f)

Reduce memory / check requirements

Use physics process and thresholds relevant to the problem

WW
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Importance Biasing

 Importance biasing combines two techniques:

 Surface splitting: Reduces s but increases t

 Russian roulette: which does the opposite

 It is the simplest, most safe and easiest to use of all biasing

 The user assigns a relative importance to each geometry region 
(the absolute value doesn’t matter) based on:

 expected fluence attenuation with respect to other regions

 probability of contribution to score by particles entering the region

 Importance biasing is commonly used to maintain a constant 
particle population, compensating for attenuation due to 
absorption or distance.

 In FLUKA it can be tuned per type of particle

Cards: BIASING



Importance biasing - 2

Surface Splitting

A particle crosses a region boundary, coming from a region of importance 
I1 and entering a region of higher importance I2 > I1:

• the particle is replaced on average by n=I2/I1 identical particles
with the same characteristics

• the weight of each “daughter” is multiplied by I1/I2

If  I2/I1 is too large, excessive splitting may occur with codes which do not 
provide an appropriate protection .

An internal limit in FLUKA prevents excessive splitting if I2/I1 is too large 
(> 5), a problem found in many biased codes.

Cards: BIASING
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Russian Roulette

A particle crosses a region boundary, coming from a region of importance I1

and entering a region of lower importance I2 < I1:

• the particle is submitted to a random survival test: with a chance   
I2/I1 the particle survives with its weight increased by a factor I1/I2

• with a chance (1 - I2/I1) the particle is killed

Importance biasing is commonly used to maintain a uniform particle 
population, compensating for attenuation due to absorption or distance. In 
FLUKA it can be tuned per particle type.

Importance biasing - 3

Cards: BIASING
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Note:

In FLUKA, for technical reasons, importances are internally stored as 
integers. Therefore, importances can only take values between 
0.0001 and 100000. An input values 0.00015 is read as 0.0001, 
0.00234 is read as 0.0023, etc.

There is also a user routine USIMBS which allows to assign 
importances not only at boundaries, but at each step, according to 
any logic desired by the user (as a function of position, direction, 
energy,…). 
Very powerful, but time-consuming (it is called at each step!). 
The user must balance the time gained by biasing with that wasted 
by calls.

Importance biasing - 4

Cards: BIASING
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BIASING 0.0       0.0      4.64        8.       18.        2.PRINT

The meaning of WHAT(1)...WHAT(6) and SDUM is different depending on the
sign of WHAT(1):

If WHAT(1) >= 0.0 :

WHAT(1) specifies the particles to be biased

= 0.0 : all particles

= 1.0 : hadrons and muons

= 2.0 : electrons, positrons and photons

= 3.0 : low energy neutrons

WHAT(2) = (see multiplicity tuning)

WHAT(3) = region importance (Default = 1.0)

Allowed values range from 0.0001 to 100000.

Importance biasing – 5

Cards: BIASING
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BIASING 0.0       0.0      4.64        8.       18.        2.PRINT

If WHAT(1) >= 0.0 :

WHAT(4) = lower bound of the region indices/names (Default = 2.0)

WHAT(5) = upper bound of the region indices/names (Default = WHAT(4))

WHAT(6) = step length in assigning indices (Default = 1.0)

SDUM    = PRINT :   importance biasing counters are printed
= NOPRINT:  counters are not printed 

(cancels any previous PRINT request)
= USER:     importance biasing 

according to the user defined routine USIMBS
= NOUSER:   reset to default (cancels any previous USER request)
= RRPRONLY: multiplicity biasing for primary particles only
= (blank):  ignored

(Default: NOPRINT, NOUSER, multiplicity biasing for all generations)

Importance biasing - 6

Cards: BIASING
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BIASING 2.0       0.0      10.0       7.0      11.0      2.0

BIASING 2.0       0.0      15.0       8.0       9.0      0.0

BIASING -1.0       0.0       3.0       4.0       0.0      0.0

If WHAT(1) < 0.0 :

WHAT(1) : flag indicating that all region importances shall be 

modified by a particle-dependent factor

WHAT(2) >= 0.0 : modifying factor M

<  0.0 : M is reset to the default value 1.0 

WHAT(3) = lower bound of the particle indices/names (Default: = 1.0)

WHAT(4) = upper bound of the particle indices/names

(Default: = WHAT(3) if WHAT(3) > 0, all particles otherwise)

WHAT(5) = step length in assigning  particle indices (Default: 1.0)

WHAT(6) = not used

SDUM    = PRIMARY :   importance biasing is applied also to primaries
NOPRIMARy : importance biasing is applied only to secondaries

Default = PRIMARY

Importance biasing - 7

Cards: BIASING
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Importance Biasing – 8 : Problems 1

 In complex geometries, it may be hard to keep track 
of all importances in every region

 To avoid such ‘cold spots’, it is helpful to plot 
importances. This can be performed with 
Flair>Geoviewer

I=1 A

Cards: BIASING

I=2 B

I=4 C

I=1 D

I=16 E

When going from C to D 75 % of 
the particles are killed!! – waste 
of previous tracking effort
(then the remaining particles 
entering E are split in an average 
of max(16/1,5) = 5 copies)
Backscattered particles going 
from D to C will be split into 4 
copies! – unnecessary!
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Importance Biasing – 8 : Problems 2

 Although important biasing is relatively easy and safe to use, 
there are a few cases where caution is recommended

Which importance shall we give to

region E? Whatever value we choose

we will get an inefficient splitting/RR

at some of the boundaries.

 Another case is that of splitting in vacuum (or air). Splitting 
daughters are strongly correlated. It must be made sure that 
their further histories are differentiated enough to forget their 
correlation.

 The above applies in part also to muons (the differentiation 
provided by multiple scattering and by Landau dE/dx fluctuations 
is not always sufficient).

Cards: BIASING

I=?

I=1

I=2

I=4

I=8

B

C

D

AE
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usimbs.f: User Defined Importance Biasing
 Typical problem: Spend a lot of time to write the problem input, 

geometry and on the first runs you realize that statistics are not 
good

 First method (and safest) is to introduce region importance 
biasing. In FLUKA you can introduce it with two ways:
 1st Manually slice the geometry and increase the number of regions. 

Modifying an existing geometry to introduce biasing can be a very 
cumbersome process

 2nd Introduce the “importance biasing” information with a user 
fortran routine independent of the regions defined in the geometry

 Routine: usimbs.f

USer defined IMportance BiaSing

Allows to implement any importance biasing scheme based on 
region number and/or phase space coordinates
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usimbs.f: User Defined Importance Biasing

 Enable the call to USIMBS routine with the BIASING card:

 WHAT(1) Particles to be biased

 WHAT(2) and WHAT(3) ≠ 1.0 (Any value ≠ 1.0)

 WHAT(4) Lower bound of region

 WHAT(5) Upper bound of region

 WHAT(6) Step

 SDUM = USER

Remember:

 If WHAT(3)=1 for a region, the routine will not be called during 
tracking of particles inside that region

 Cannot have both normal importance BIASING with cards and the 
routine at the same time
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usimbs.f – Routine

The routine is called on every particle step!
WARNING: can slow down the 

execution speed! Use with caution.
Input:
 Region information at the beginning and 

end of the step
 X,Y,Z coordinates through the TRACKR

common.
Beginning: X, Y, Ztrack(0)
End: X, Y, Ztrack(Ntrack)

 Particle type and Energy could be used 
for even more advanced biasing schemes

Output:
The routine must return the importance 
ratio to the new position (end/beginning) 
in the variable FIMP < 5.0

Entry: USIMST
Split the particles step between 
interactions in half (or any other user 
defined value)

SUBROUTINE USIMBS ( MREG, NEWREG, FIMP )

INCLUDE '(DBLPRC)'

INCLUDE '(DIMPAR)'

INCLUDE '(IOUNIT)'

*

*----------------------------------------------------------------------

*     USer defined IMportance BiaSing:                                 *

*     Created on   02 july 2001    by    Alfredo Ferrari & Paola Sala  *

*                                                   Infn - Milan       *

*     Last change on 09-jul-01     by    Alfredo Ferrari               *

*     Input variables:                                                 *

*                Mreg = region at the beginning of the step            *

*              Newreg = region at the end of the step                  *

*     (thru common TRACKR):                                            *

*              Jtrack = particle id. (Paprop numbering)                *

*              Etrack = particle total energy (GeV)                    *

*       X,Y,Ztrack(0) = position at the beginning of the step          *

*  X,Y,Ztrack(Ntrack) = position at the end of the step                *

*    Output variable:                                                  *

*                Fimp = importance ratio (new position/original one)   *

*----------------------------------------------------------------------

INCLUDE '(TRACKR)‘

FIMP   = ONEONE

RETURN

END

*======================================================================*

*     Entry USIMST:                                                    *

*     Input variables:                                                 *

*                Mreg = region at the beginning of the step            *

*                Step = length of the particle next step               *

*    Output variable:                                                  *

*                Step = possibly reduced step suggested by the user    *

*======================================================================*

ENTRY USIMST ( MREG, STEP )

IF ( STEP .GT. ONEONE ) STEP = HLFHLF * STEP

RETURN

*=== End of subroutine Usimbs =========================================*

END
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usimbs.f – Important Notes

 The routine has only a relative effect on the weight of the particle
 Beam particles can have any weight.

 Importance ratio will be limited by WW-THRESh card

 The Russian Roulette / Splitting will take place at the middle 
(defined by the ENTRY) of the step,
and not on a fixed region boundary.

 The biasing position will be a little fuzzy depending on the 
particle step. This has a visible effect when it is applied to low 
density materials (i.e. air)

 Results will similar but not the same as with the manual region 
biasing.

 Is a great time saver for complex geometries, as well different 
biasing schemes

 Combined with the particle type and energy could become very 
powerful
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usimbs.f: Simple Example

 Biasing a factor of 2 every 50 cm on the Z direction from 100cm 
to 500cm

ZSTART = ZTRACK(0)

IF (ZSTART .LT. 100.0D0) THEN

FSTART = ONEONE

ELSE IF (ZSTART .GT. 500.0D0) THEN

FSTART = TWOTWO ** NINT((500.0D0-100.0D0)/50.0D0)

ELSE

FSTART = TWOTWO ** NINT((ZSTART-100.0D0)/50.0D0)

ENDIF

ZEND = ZTRACK(NTRACK)

* Similarly calculate the FEND from ZEND

…

FIMP = FEND / FSTART

Initial position

Final position

Importance Ratio
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usimbs.f: Function example

 Introduce an importance biasing assuming an exponential law of 
attenuation in the R direction exp(-l  R), for R>1cm

RSTART = SQRT(XTRACK(0)**2 + YTRACK(0)**2 + ZTRACK(0)**2)

REND = SQRT(XTRACK(NTRACK)**2 + YTRACK(NTRACK)**2 +   
ZTRACK(NTRACK)**2)

IF (RSTART .LT. ONEONE) THEN

FSTART = ONEONE

ELSE

FSTART = EXP(-ALAMBDA * RSTART)

ENDIF

IF (REND .LT. ONEONE) THEN

FEND = ONEONE

ELSE

FEND = EXP(-ALAMBDA * REND)

ENDIF

FIMP = FSTART / FEND
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N-step method

 2-step method explained in sources lecture

 Events from one run are dumped in a file (mgdraw.f) 
and used as starting particles through source.f routine

 This method is similar to importance biasing, as 
(selected) particles crossing a given interphase are 
sampled many times in the next step, which is 
equivalent to splitting them

Card: EMF-BIAS
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Leading Particle Biasing - 1

 Leading Particle Biasing is available only for e+, e- and photons

 It is generally used to avoid the geometrical increase with energy
of the number of particles in the electromagnetic shower

 It is a characteristic of EM interactions that
2 particles are present in the final state

 if LPB is activated only one is randomly retained and its weight is 
adjusted so as to conserve weight × probability

 The most energetic of the two particles is kept with higher 
probability (as it is the one which is more efficient in propagating 
the shower)

 LPB is reducing t, but increases s by introducing large weight 
fluctuations. Therefore is should nearly always be backed up by 
WW

 Very useful for shielding calculations at both electron and proton 
accelerators

Card: EMF-BIAS



EMF-BIAS 1022.        0.     5.E-4       16.       20.        2.LPBEMF

For SDUM = LPBEMF (default):

WHAT(1) > 0.0: leading particle biasing (LPB) is activated

WHAT(1) = 20×b0 + 21×b1 + 22×b2 + 23×b3 + 24×b4 +

25×b5 + 26×b6 + 27×b7

(b0 = 1 : LPB for bremsstrahlung and pair production)

b1 = 1 : LPB for bremsstrahlung

b2 = 1 : LPB for pair production

b3 = 1 : LPB for positron annihilation at rest

b4 = 1 : LPB for Compton scattering

b5 = 1 : LPB for Bhabha & Moller scattering

b6 = 1 : LPB for photoelectric effect

b7 = 1 : LPB for positron annihilation in flight

Note: WHAT(1) = 1022 activates LPB for all physical effects

(values larger than 1022 are converted to 1022)
(FLAIR uses 254)

< 0.0: leading particle biasing is switched off

= 0.0: ignored

Leading Particle Biasing - 2 
Card: EMF-BIAS
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WHAT(2) > 0.0: energy threshold below which LPB is played for 

electrons and positrons 

electrons: kinetic energy

positrons: total energy plus rest mass energy

< 0.0: resets any previously defined threshold to infinity

(i.e., LPB is played at all energies, Default)
= 0.0: ignored

WHAT(3) > 0.0: energy threshold below which LPB is played for photons

< 0.0: resets any previously defined threshold to infinity

(i.e., LPB is played at all energies, Default)
= 0.0: ignored

WHAT(4) = lower bound of the region indices/names (Default = 2.0)

WHAT(5) = upper bound of the region indices/names (Default = WHAT(4))

WHAT(6) = step length in assigning indices/names (Default = 1.0)

EMF-BIAS 1022.        0.     5.E-4       16.       20.        2.LPBEMF

Leading Particle Biasing - 3
Card: EMF-BIAS
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• Multiplicity tuning is meant to be for hadrons what Leading Particle   
Biasing is for electrons and photons.

• A hadronic nuclear interaction at LHC energies can end in hundreds  
of secondaries. Thus, to simulate a whole hadronic cascade in bulk    
matter may take a lot of CPU time.

• Except for the leading particle, many secondaries are of the same 
type and have similar energies and other characteristics.

• Therefore, it is possible to discard a predetermined average fraction
of them, provided the weight of those which are kept and 
transported be adjusted so that the total weight is conserved (but 
the leading particle is never discarded).

• The user can tune the average multiplicity in different regions of 
space by setting a region-dependent reduction factor (in fact, it can 
even be > 1 ! But this possibility is seldom used).

Multiplicity tuning - 1
Cards: BIASING
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BIASING 1.0       0.7       1.0        8.       18.        1.

WHAT(1) specifies the particles to be biased with WHAT(3) (see before)

= 0.0 : all particles
= 1.0 : hadrons and muons
= 2.0 : electrons, positrons and photons

WHAT(2) = RR (or splitting) factor by which the average number of

secondaries produced in a collision should be reduced (or

increased). (Default = 1.0) – No RR if less than 3 secondaries

WHAT(3) = (see importance biasing)

WHAT(4) = lower bound of the region indices/names (Default = 2.0)

WHAT(5) = upper bound of the region indices/names (Default = WHAT(4))

WHAT(6) = step length in assigning indices/names (Default = 1.0)

SDUM    = RRPRONLY: multiplicity biasing for primary particles only
= (blank):  ignored (Default)

Multiplicity tuning - 2
Cards: BIASING
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Decay lengths:

• The mean life/average decay length of unstable particles can 
be artificially shortened.

• It is also possible to increase the generation rate of decay 
products without the parent particle actually disappearing.

• Typically used to enhance statistics of muon or neutrino 
production.

• The kinematics of the decay can also be biased (decay angle).

Biasing mean free paths - 1
Cards: LAM-BIAS
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for SDUM = GDECAY:

WHAT(1) :  mean decay length (cm) of the particle in the laboratory 

frame is set = |WHAT(1)| if smaller than the physical decay length 

(otherwise it is left unchanged). 

< 0.0 : At the decay point Russian Roulette (i.e. random choice)

decides whether the particle actually will survive or not
after creation of the decay products. The latter are created in 
any case and their weight adjusted taking into account the ratio 
between biased and physical survival probability.

> 0.0 : Let Pu = unbiased probability and Pb = biased probability: at the

decay point the particle always survives with a reduced 
weight W=(1-Pu/Pb). Its daughters are given a weight W=Pu/Pb

(as in case WHAT(1) < 0.0).

LAM-BIAS -3.E+3        1.        1.       13.       16.        0.GDECAY

Biasing mean free paths - 2
Cards: LAM-BIAS
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for SDUM = blank:

WHAT(1) : the mean life of the particle in its rest frame is reduced 

by a factor |WHAT(1)| (must be <= 1.0)

< 0.0 : (as for SDUM=GDECAY) Russian Roulette 

> 0.0 : (as for SDUM=GDECAY) the particle always survives                 

with a reduced weight

for SDUM = blank or GDECAY

WHAT(2) and WHAT(3) : (see interaction length biasing) 

WHAT(4) = lower bound of the particle index (Default = 1.0)

WHAT(5) = upper bound of the particle index

(Default = WHAT(4) if WHAT(4) > 0, 46 otherwise)

WHAT(6) = step length in assigning indices (Default = 1.0)

LAM-BIAS -0.5        1.        1.       13.       16.        0.

Biasing mean free paths - 3
Cards: LAM-BIAS
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Interaction lengths:

• In a similar way, the hadron or photon mean free path for non-
elastic nuclear interactions can be artificially decreased by a 
predefined particle or material-dependent factor.

• This option is useful for instance to increase the probability for 
beam interaction in a very thin target or in a material of very low    
density.

• It is also necessary to simulate photonuclear reactions with  
acceptable statistics, the photonuclear cross section being much 
smaller than that for EM processes.

Biasing mean free paths - 4
Cards: LAM-BIAS
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WHAT(1): (see decay length biasing)

WHAT(2) : biasing factor for hadronic inelastic interactions

The hadronic inelastic interaction length of the particle is reduced by a 

factor |WHAT(2)| (must be <= 1.0)

< 0. : At the interaction point Russian Roulette (i.e. random choice)

decides whether the particle actually will survive or not after
creation of the secondaries products. The latter are created in
any case and their weight adjusted taking into account the ratio
between biased and physical survival probability.

> 0. : At the interaction point the particle always survives with a

reduced weight. The secondaries are created in any case and
their weight adjusted taking into account the ratio between
biased and physical survival probability. 

LAM-BIAS 0.0      0.02       11.        7.        0.        0.

Biasing mean free paths - 5
Cards: LAM-BIAS
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WHAT(3) : If > 2.0 : number of the material to which the inelastic
biasing factor has to be applied.

< 0.0 : resets to the default a prev. assigned value
= 0.0 : ignored if a value has been previously assigned to a specific

material, otherwise all materials
0.0 < WHAT(3) =< 2.0 : all materials

(Default = 0.0) 

WHAT(4) = lower bound of the particle indices/names (Default = 1.0)

WHAT(5) = upper bound of the particle indices/names

(Default = WHAT(4) if WHAT(4) > 0, 46 otherwise)

WHAT(6) = step length in assigning indices (Default = 1.0)

LAM-BIAS 0.0      0.02       11.        7.        0.        0.

Biasing mean free paths - 6
Cards: LAM-BIAS
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Biasing can be applied to photons and muons if PHOTONUC and 
MUPHOTON cards are included. 
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Weight Windows - 1

 The WW technique is a combination of splitting and RR, but it is 
based on the absolute value of the weight of each individual 
particle, rather than on relative region importance

 The user sets an upper and a lower weight limit, generally as a 
function of region, energy and particle

 Particles having a weight larger than the upper limit are split, 
those with weight smaller than the lower limit are submitted to 
RR  killed or put back “inside the window”

 WW is a more powerful biasing tool than Importance Biasing, but 
it requires also more experience and patience to set it up 
correctly
“It is more an art than a science” (From MCNP Manual)

 Use of the WW is essential whenever other biasing techniques 
generate large weight fluctuations in a given phase space region.

 For Low Energy neutrons the energy range should be defined 
through WW-PROFILe (instead of WW-THRESh)

Cards: WW-FACTOr, WW-THRESh, WW-PROFIle



Weight Windows - 2

Killing a particle with a very low weight (with respect to the average for a 
given phase space region) decreases t but has very little effect on the 
score (and therefore on s )

Splitting a particle with a large weight increases t (in proportion to the 
number of additional particles to be followed) but at the same time 
reduces s by avoiding large fluctuations in the contributions to 
scoring.

The global effect is to reduce s2t

A too wide window is of course ineffective, but also too narrow windows 
should be avoided. Otherwise, too much CPU time would be spent in 
repeated splitting / Russian Roulette. A typical ratio between the upper and 
the lower edge of the window is about 10. It is also possible to do Russian 
Roulette without splitting (setting the upper window edge to infinity) or 
splitting without Russian Roulette (setting the lower edge to zero)

40

Card:  WW-FACTO, WW-THRES ,WW-PROFI



Weight Windows - 3

Energy

W
e
ig

h
t

WW-THRES

WHAT(1)

WW-THRES

WHAT(2)

WW-FACTO

WHAT(1)

WW-FACTO

WHAT(2)

W1

W2

E1 E2

WW-FACTO

WHAT(3)

WW-FACTO

WHAT(3)x x

region dependent
particle type dependent

W1 / 
WW-THRES

WHAT(3)

W2 x 
WW-THRES

WHAT(3)

Cards:  WW-THRES, WW-FACTO

constant window
for E<E1

no window
for E>E2

gradually increasing 
(or decreasing) window

for E1<E<E2

Russian Roulette

Splitting
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WW-FACTO        13.0     120.0       1.5      27.0      31.0       2.0

Defines Weight Windows in selected regions

WHAT(1) >= 0.0 : Window “bottom” weight

< 0.0 : resets to -1.0 (no Russian Roulette, Default)

Weight below which Russian Roulette is played at the lower energy threshold 

(set by WW-THRES). 

WHAT(2)  >  1.7 * WHAT(1) : Window “top” weight

=  0.0           : ignored

=< 1.7 * WHAT(1) : resets to infinity (no Splitting, Default) 

Weight above which Splitting is applied at the lower energy threshold (set by 

WW-THRES).

WHAT(3)  > 0.0  : Multiplicative factor (Default: 1.0)

= 0.0  : ignored

< 0.0  : resets to 1.0

Factor to be applied to the two energy thresholds for                                                                    

Russian Roulette / Splitting (set by WW-THRES)

Weight Windows - 4
Card:  WW-FACTO
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WW-FACTO        13.0     120.0       1.5      27.0      31.0       2.0

WHAT(4) = lower bound of the region indices/names (Default = 2.0)

WHAT(5) = upper bound of the region indices/names (Default = WHAT(4))

WHAT(6) = step length in assigning indices/names (Default = 1.0)

SDUM    : a number from 1.0 to 5.0 in any position, indicating the low-energy neutron 

weight-window profile to be applied in the regions selected 
(see WW-PROFI). (Default = 1.0)

= blank, zero or non numerical: ignored

< 0.0 : resets to 1.0

Attention: Option WW-FACTO alone is not sufficient to define a 

weight window. 
One or more WW-THRES cards are also necessary in

order to activate the window.

Weight Windows - 5
Card:  WW-FACTO
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WW-THRES 2.0      0.05       2.4       3.0       7.0       0.0

Defines the energy limits and particle-dependent modification factors

WHAT(1) >  0.0: upper kinetic energy threshold (GeV)

Low-energy neutrons: lower group number (included)

=  0.0: ignored

<  0.0: any previously selected threshold is cancelled

WHAT(2) >= 0.0 and < WHAT(1): lower kinetic energy threshold (GeV)

Low-energy neutrons: upper group number (included)

<  0.0 or > WHAT(1): WHAT(2) is set = WHAT(1)

WHAT(3) > 0.0: amplification factor to define the weight window width 

at the higher energy threshold represented by WHAT(1).

The weight window at the higher energy threshold is
obtained by multiplying by WHAT(3) the upper weight

limit and by dividing by the same factor the lower 

weight limit. (Default = 10.0)

< 0.0: |WHAT(3)| multiplication factor for the lower and upper 

weight limits for the particles selected by WHAT(4-6) 

(Default = 1.0)

Weight Windows - 6
Card:  WW-THRES
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WW-THRES 2.0      0.05       2.4       3.0       7.0       0.0

WHAT(4) = lower bound of the particle indices (Default = 1.0) 

Note that particle index 40 indicates low-energy neutrons

(for this purpose only!). Particle index 8 indicates 

neutrons with energy > 19.6 MeV.

WHAT(5) = upper bound of the particle indices

(Default = WHAT(4) if WHAT(4) > 0, all particles otherwise)

WHAT(6) = step length in assigning indices (Default = 1.0)

SDUM    = PRIMARY: the weight window applies also to primary

particles (default)

= NOPRIMARy: the weight window doesn't apply to primaries

Weight Windows - 7
Card:  WW-THRES
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BIASING 0.0       0.0      4.64        8.       18.        2.PRINT

Hadron importance RR/Splitting counters

Reg. #  N. of RR  <Wt>  in  <Wt> kil Reg. #  N. of RR  <Wt>  in  <Wt> kil Reg. #  N. of RR  <Wt>  in  <Wt> kil

1  0.00E+00  0.00E+00 0.00E+00 2  0.00E+00  0.00E+00 0.00E+00 3  1.15E+05  9.31E-01  4.70E-02

Reg. #  N. of Sp <Wt>  in  <Wt> out Reg. #  N. of Sp <Wt>  in  <Wt> out Reg. #  N. of Sp <Wt>  in  <Wt> out

1  0.00E+00  0.00E+00 0.00E+00 2  0.00E+00  0.00E+00 0.00E+00 3  0.00E+00  0.00E+00 0.00E+00

Reg. #  N. of RR  <Wt>  in  <Wt> kil Reg. #  N. of RR  <Wt>  in  <Wt> kil Reg. #  N. of RR  <Wt>  in  <Wt> kil

4  1.36E+04  4.66E-01  1.47E-01       5  8.97E+03  3.22E-01  1.06E-01       6  6.03E+03  2.16E-01  7.10E-02

Reg. #  N. of Sp <Wt>  in  <Wt> out Reg. #  N. of Sp <Wt>  in  <Wt> out Reg. #  N. of Sp <Wt>  in  <Wt> out

4  1.01E+05  9.99E-01  7.64E-01       5  9.25E+04  6.80E-01  5.23E-01       6  8.24E+04  4.65E-01  3.55E-01

…

FLUKA output file:

"N. of RR" --> Number of FLUKA particles entering a region and which are not split

(i.e., particles undergoing Russian Roulette as well as neither

Russian Roulette nor splitting)

"<Wt>  in" --> Average weight of these particles

"<Wt> kil" --> Average weight of particles killed after being submitted to Russian 

Roulette

"N. of Sp" --> Number of FLUKA particles entering the region and which are split

"<Wt>  in" --> Average weight of these particles

"<Wt> out" --> Average weight of particles after being submitted to splitting
46

Selecting Weight Windows - 1
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Selecting Weight Windows - 2

Note -1: RR and splitting arising from Weight-Window biasing (options 
WW-FACTOR, WW-THRESh, WW-PROFI) or from multiplicity 
biasing (WHAT(2) in option BIASING) are not accounted for in the 
counters.

Note – 2: Separate counters are printed for hadrons/muons, 
electrons/photons and low-energy neutrons (referring to 
importance biasing requested by BIASING, respectively, with 
WHAT(1) = 1.0, 2.0 and 3.0, or = 0.0 for all).

where

A = "N. of RR" + "N. of Sp" 

= total number of particles entering the region

B = ("<Wt> in"_RR * "N. of RR") + ("<Wt> in"_Sp * "N. of Sp") 

= total weight of the particles entering the region

B/A = average weight of the particles entering the region
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Selecting Weight Windows - 3

Strategy:
1. run without any biasing and print counter, e.g.,

BIASING     0.0       1.0       1.0        1.        9.        PRINT

2. analyze counter and adjust region importance biasing, e.g., according 
to the inverse of the attenuation in shielding, add other biasing, e.g.,
leading particle biasing run and print counter again

BIASING  0.0       1.0       1.0        1.        9.       PRINT

BIASING  0.0       1.0      1.47        4.

BIASING  0.0       1.0      2.15        5.

BIASING  0.0       1.0      3.16        6.

BIASING  0.0       1.0      4.64        7.

BIASING  0.0       1.0      4.64        8.

3. analyze counter, select Weight Windows (WW-THRES, WW-FACTO) 
around average weights and perform final (high-statistics) run
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Selecting Weight Windows - 4

Alternative Strategy:

1. Include USERDUMP card in input file to activate call to mgdraw.f

USERDUMP    100.0      25.0       4.0        1.

2. Edit mgdraw.f (bxdraw) to print energy and weight of particles (filter 
by particle if wanted) entering specific areas of the geometry, e.g.

IF ( .NOT. LFCOPE) THEN

LFCOPE = .TRUE.

OPEN (UNIT = 86, FILE = “tuneWW.dat”, STATUS = “UNKNOWN”)

END IF

. . .

IF (MRGNAM.eq.”OLDCELL”.and.NRGNAM.eq.”NEWCELL”.and.jtrack.eq.3) THEN 

write(86,*)wtrack, etrack

END IF

. . .

3. Produce scatter plot weight(E) by loading file “tuneWW.dat” in gnuplot
gnuplot> plot ‘tuneWW.dat’ using 2:1

3. Tune WW accordingly
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Non analogue absorption

 Implemented in most low-energy neutron transport codes, where 
at each neutron collision the neutron always survives with its 
weight multiplied by the physical survival probability ss/st

 In FLUKA there is an additional choice: the user can force the 
neutron absorption probability to take an arbitrary value, pre-
assigned on a region-by-region basis as a function of energy. The 
neutron weight is properly normalized by the code accordingly.

When and How

 A smaller survival probability is often assigned to thermal 
neutrons to limit the number of scatterings in non-absorbing 
media

 Also very useful in materials with unusual scattering properties
(e.g. Iron)

 Survival probabilities too small with respect to the physical one 
ss/st may introduce large weight fluctuations due to the very 
different number of collisions suffered by individual neutrons. In 
these cases a WW should be applied.

 Also called survival biasing

Cards: LOW-BIAS
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Card: RADDECAY [1/2]

* 1) request radioactive decays

RADDECAY 1.0         0       3.0          0000099999         0

WHAT(1) = 1 radioactive decays activated for requested cooling times
Decays: Active “activation study case”: time evolution calculated analytically for fixed

(cooling) times. Daughter nuclei as well as associated radiation is 
considered at these (fixed) times 

> 1 radioactive decays activated in semi-analogue mode
Semi-Analogue each radioactive nucleus is treated like all other unstable particles 

(random decay time, daughters and radiation), all secondary 
particles/nuclei carry time stamp (“age”)

WHAT(2) > 0 isomer “production” activated
Patch Isom: On

WHAT(3) number of “replicas” of the decay of each individual nucleus
Replicas: #
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Card: RADDECAY [2/2]

WHAT(4) switch for applying various biasing features only to prompt 
radiation or only to particles from radioactive decays

h/m Int .. Low-n WW 9 digits, each responsible for a different biasing 
Example: 

5th digit, e+/e-/gamma leading particle biasing applied
000010000  to prompt radiation only
000020000  to decay radiation only
000030000  to both

Default: 111111111 (or blank as above)

WHAT(5) multiplication factors to be applied to transport cutoffs
decay cut: # 10 digits, first five for decay radiation, second five for prompt
prompt cut: # radiation (see manual)

Special cases: 
0000099999 kill EM cascade for prompt radiation
9999900000 kill EM cascade for residual radiation
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Source.f: Biasing distribution of primaries

 Low occurrence primaries may have important 
consequences on the final response, e.g. high energy 
tail of synchrotron radiation can generate neutrons 
(i.e. activation)

 Actual distributions, e.g. f(E), can be biased (i.e. 
distorted) by a function, e.g. b(E) = c*E 

 g(E) = f(E)*b(E)

 Whether g(E) is sampled through inverse transform or 
through rejection, starting weights of particles 
WTFLK(NPFLKA) should then be adjusted by *1/fb

 Use with moderation/care…this can introduce strong 
weight dispersion  weigh-windows to split high-

weight particles…
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udcdrl.f: Neutrino Decay Biasing
 There is a special routine udcdrl.f where one can bias the direction 

of the emitted neutrino in decays.

DOUBLE PRECISION FUNCTION UDCDRL( IJ, KPB, NDCY, UDCDRB, VDCDRB, WDCDRB)

Input variables:

IJ decaying particle

KPB outgoing neutrino

Output variables:

U,V,W DCDRB preferential outgoing direction for the neutrino

UDCDRL Lambda for direction biasing (1-cos(q))

The biasing expression is of the form:

e-(1-cosq/l)

 Useful for neutrino applications like CNGS, Beta Beams…

 For a fixed direction the LAM-BIAS card with SDUM=DCY-DIRE could be 
used instead

 NOTE: angular biasing is only available (and mostly only makes 
sense) for neutrinos due to their low interaction cross-sections
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udcdrl.f: Example (n_TOF)

 Bias the direction of the neutrino in the pion decay so the 
daughter muon to be directed to the exp. area  @(-120,0,18500). 
The direction is given in the lab-frame, and in this example the 
energies we are dealing are small, so safely we can assume that 
also in the lab-frame, the neutrino and muon go in opposite 
directions. The lambda is ¼ wide enough to cover the whole exp 
area.

Direction in the lab frame

Width [1-cos(q)]



usbset.f: User BiaSing SETting

 called after reading in the input file and before the first event

 allows to alter almost any biasing weight on a region-dependent 
basis

SUBROUTINE UBSSET (     IR, RRHADR, IMPHAD, IMPLOW, IMPEMF,

&                    IGCUTO, IGNONA, PNONAN, IGDWSC, FDOWSC,

&                    JWSHPP,  WWLOW,  WWHIG,  WWMUL, EXPTR ,

&                    ELECUT, GAMCUT,  LPEMF, ELPEMF, PLPEMF )

region number
region importances

EMF-CUT

Weight Windows

region importances
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Other optimizations - 1

 Raising EMF thresholds (EMF-CUT)... 

 in regions far from the scoring area or deep into the shielding

 in heavy materials (at least 100-200 keV, unless in single scattering 
mode) 

 to GDR threshold (5-15 MeV) for neutron-dominated problems

 to muon production threshold (>~100 MeV) for muon-dominated 
problems

Notes:

 These techniques will help get a faster estimate with relatively good 
accuracy

 The sensitivity of results to EMF-CUT changes should be tested to 
assess biasing effect on results

 In many cases further simulations with lower thresholds are not 
needed 

WARNING:

 Rather than optimization, raising thresholds is OFTEN a user mistake 
as done irrespectively of the relevant physical processes



Example: CPU vs Thresholds and LPB
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Other optimizations - 2

 Data initialization in user routines: Avoid unnecessary 
repetition of global initialization steps at each call of a user 
routine

 Use one-time check with logical variable, e.g.

IF (LFIRST) THEN

…

LFIRST = .FALSE.

END IF

 Example 1: number to name conversion: generate conversion table, 
save and use thereafter

 Example 2: preliminary mathematical transformations before 
sampling in source routine

 Move instructions that are not updated in loops out of 
those
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Other optimizations - 3
 Using symmetries for mesh scoring, e.g. |x|, |y|, |z|, |r|, r-phi-

z, r-phi-|z|, r-z, r-|z|

Notes:

 For example a symmetry over one plane saves 40% CPU time

 Symmetry can also be forced through usrmed.f (activated by option 
MAT-PROP with SDUM USERDIRE).

 Rebinning 1-D and 2-D to coarser mesh

 Data writing:  dumping or writing large amount of data can 
considerably slow down calculations. 

 In large input files, and inherited setups, deactivate unnecessary 
legacy scoring, specially fine grid 3D histograms (e.g. USRBIN)

 Avoid using 3D histograms (large size scoring), use instead 2D 
histograms (scoring in a plane) or 3D histograms with a coarse grid in 
one of the axis

 Limit tape writing to necessary. Optimize the mathematical expressions 
in mgdraw.f

 Tune-up scoring cards with short runs (good practice for several 
aspects) to optimize scoring scales
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Other optimizations - 4
 Geometry optimization

 Adjust NAZ in region definition to make it equal or slightly larger than 
the number of neighboring regions. Check for for “GEOMETRY SEARCH 
ARRAY” warnings in output

 If a region has too many neighboring cells, subdivide it in zones or 
regions to lower number of neighboring cells per zone

 If there are components (with sub-structure) that are repeated many 
times in the geometry use LATTICE capabilities to reduce number of 
regions

 More: Biasing impurities in compounds, number of replica in 
activation/decay…

 Other checks: these are not ON by default, so check only if you are 
recycling an input file or you are using it for a different application 
and CPU is an issue: 

 Make sure single EMF scattering (MULSOPT) is not ON unless needed 
(low energy, thin geometry)

 If not looking at activation, heavy ion evaporation does not need to be 
switched ON (WHAT(2) of PHYSICS card with SDUM EVAPORAT)



62

Warnings…

 BIASING focuses the CPU onto a phase-space area of the 
problem, sacrificing other areas

 Reducing simulation time does not necessarily mean the 
simulation has been optimized

 Similarly, reducing variance does not necessarily mean 
the simulation has been optimized

 Small statistical error does not mean the error is actually 
low. This is specially true if splitting / two step methods, 
etc. are used. Correlations may be hidden.

 Biasing may reduce the error in the estimation of the 
average of a variable, but the higher momenta of that 
variable will not be obtained (e.g. the variance of the PDF 
distribution for that variable cannot be estimated). 

 Simulation optimization may safe CPU time, but it can 
cost considerable manpower
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Biasing

Beginners’ FLUKA Course
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usimbs.f: Sampling from array [1/4]

 Create a concentric cylindrical biasing with the weights sample 
from an array with various radii

 Define the variables:
PARAMETER (NBIAS=5)

PARAMETER (Xcenter=ZERZER)

PARAMETER (Ycenter=ZERZER)

DOUBLE PRECISION BIASR(NBIAS), BIASF(NBIAS)

* Radius

DATA BIASR / 200.0, 250.0, 300.0, 400.0, 500.0 /  

* Biasing factor

DATA BIASF /  NBIAS * 2.0 /

LOGICAL LFIRST

DATA LFIRST / .TRUE. /

SAVE LFIRST, BIASR, BIASF
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usimbs.f: Sampling from array [2/4]

 Initialization – build the cumulative importance factor

IF (LFIRST) THEN

WRITE(LUNOUT,*) "*** User defined biasing ***"

PREVBIAS = 1.0

DO N=1,NBIAS

PREVBIAS = PREVBIAS * BIASF(N)

BIASF(N) = PREVBIAS

WRITE(LUNOUT,*) "Bias cylinder: ",N, BIASR(N), BIASF(N)

*                       convert the radius to square to avoid sqrt

BIASR(N) = BIASR(N)**2

ENDDO

LFIRST = .FALSE.

ENDIF
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usimbs.f: Sampling from array [3/4]

 Calculate the importance biasing
* Find square of radius for starting/ending position

Rold = (Xtrack(0)-Xcenter)**2 + (Ytrack(0)-Ycenter)**2

Rnew = (Xtrack(Ntrack)-Xcenter)**2 + (Ytrack(Ntrack)-Ycenter)**2

* Search index of the starting position

Nold = NBinSearch(Rold, NBIAS, BIASR)

IF (Nold.EQ.0) THEN

BIASOLD = 1.0

ELSE

BIASOLD = BIASF(Nold)

ENDIF

* Search index of the new position

Nnew = NBinSearch(Rnew, NBIAS, BIASR)

IF (Nnew.EQ.0) THEN

BIASNEW = 1.0

ELSE

BIASNEW = BIASF(Nnew)

ENDIF

FIMP = BIASNEW / BIASOLD
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usimbs.f: Sampling from array [4/4]

INTEGER FUNCTION NBinSearch(x, N, VEC)

INCLUDE '(DBLPRC)'

DOUBLE PRECISION VEC(N)

NLOW = 1

NHIGH = N

NBinSearch = 0

IF (X.GE.VEC(NLOW) .AND. X.LE.VEC(NHIGH)) THEN

10 CONTINUE

MID = (NLOW+NHIGH)/2

IF (MID.EQ.NLOW) THEN

NBinSearch = MID

RETURN

ELSEIF (X .GT. VEC(MID)) THEN

NLOW = MID

ELSEIF (X .LT. VEC(MID)) THEN

HIGH = MID

ELSE

NBinSearch = MID

RETURN

ENDIF

GOTO 10

END IF

END

Perform a binary search
Converge in log2(N) steps


