

Accurate Monte Carlo modeling of biomedical cyclotrons: optimization of FLUKA physics and transport parameters for dosimetry, shielding and activation calculations

3 rd FLUKA Advanced Course and Workshop INFN Frascati (Italy), 1–5 December 2014

Angelo Infantino

Energy and Nuclear Engineer Italian Qualified Expert in Radiation Protection of III degree

Department of Industrial Engineering, University of Bologna, Bologna, Italy. *Contact: angelo.infantino@unibo.it*

DIORUM [–] Universita di

SSERE UTILIZZATO AL TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

Outline

- \triangleright Introduction
- Creation and validation of a Monte Carlo model of a biomedical cyclotron:
	- *Modeling*
	- *Optimization of the MC model*
	- *Production of ¹⁸F*
	- *Measurements of the ambient neutron dose equivalent*
- \triangleright Applications:
	- *Production of medical radioisotopes*
	- *Planning of a new cyclotron facility*
	- *Assessment of air activation: production of ⁴¹Ar*
	- *Modeling of a proton therapy degrader*
- \triangleright General problems encountered during MC modeling

Cyclotrons in medical field

Cyclotrons in medical field

FLUKA in Medical Physics

Prediction of ⁸⁹Zr production using the Monte Carlo code FLUKA

A. Infantino^a, G. Cicoria^b, D. Pancaldi^b, A. Ciarmatori^b, S. Boschi^c, S. Fanti^b, M. Marengo^b, D. Mostacci^{a,*}

^a University of Bologna, Montecuccolino Laboratory, via dei Colli 16, I-40136 Bologna, Italy

^b Department of Medical Physics, University Hospital, S.Orsola-Malpighi, Bologna, Italy

^c PET Radiopharmacy Unit, Department of Nuclear Medicine, University Hospital, S.Orsola-Malpighi, Bologna, Italy

Applied Radiation and Isotopes 69 (2011) 1134–1137

Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the **FLUKA Monte Carlo code**

K Parodi^{1,3}, A Ferrari², F Sommerer² and H Paganetti¹

¹ Massachusetts General Hospital and Harvard Medical School, 02114 Boston, USA ² CERN, 1211 Geneva 23, Switzerland

Phys. Med. Biol. 52 (2007) 3369-3387

Estimation of neutron production from accelerator head assembly of 15 MV medical LINAC using FLUKA simulations

B.J. Patil^a, S.T. Chavan^b, S.N. Pethe^b, R. Krishnan^b, V.N. Bhoraskar^a, S.D. Dhole^{a,*}

^a Department of Physics, University of Pune, Pune 411 007, India ^b SAMEER, IIT Powai Campus, Mumbai 400 076, India

Nuclear Instruments and Methods in Physics Research B 269 (2011) 3261-3265

FLUKA Benchmarks

That's the point

Nuclear Instruments and Methods in Physics Research A 562 (2006) 814-818

Validation of the FLUKA Monte Carlo code for predicting induced radioactivity at high-energy accelerators

M. Brugger, A. Ferrari, S. Roesler*, L. Ulrici

FLUKA: Performances and Applications in the Intermediate Energy Range

A. Fassò A. Ferrari, J. Ranft, P.R. Sala

planned in the near future. Shielding designers are confronted with a double challenge, due to i) the lack of reliable data in the energy range 20 MeV-1 GeV (source terms, attenuation lengths, angular and energy distributions of secondary particles) and ii) the difficulty of assessing correctly the large shield thicknesses required by the high beam intensity of most of the planned facilities. Compared with both the

Recently, new possibilities have emerged in this domain with the improvements of the code FLUKA in the range of energies below 1 GeV. For many years that program has been known as one of the main tools for designing shielding of proton accelerators in the multi-GeV energy range (its hadron event generator [10] has been adopted by the majority of the existing high-energy transport codes [11, 12, 13], including those used for particle physics simulations [14, 15]). In the last vears, however, FLUKA has gone through an important process of transformation which has converted it from a specialized to a multi-purpose program, not restricted to a limited family of particles or to a particular energy domain.

> Phys. Med. Biol. 55 (2010) 5833-5847 Benchmarking nuclear models of FLUKA and **GEANT4** for carbon ion therapy

Nuclear Instruments and Methods in Physics Research A 581 (2007) 511-516 FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

T T Böhlen^{1,2}, F Cerutti¹, M Dosanjh¹, A Ferrari¹, I Gudowska², A Mairani 3 and J M Quesada 4

L. Sarchiapone^{a,*}, M. Brugger^a, B. Dehning^a, D. Kramer^a, M. Stockner^b, V. Vlachoudis^a

FLUKA Benchmarks

PET/SPECT cylotrons (10-70 MeV)

Proton Therapy cyclotrons (250 MeV)

Ion Therapy cyclotrons (400 MeV)

TRIUMF cyclotron (500 MeV)

Proton Synchrotron Booster (CERN) (1.4 GeV)

Proton Synchrotron (CERN) (25 GeV)

LHC (CERN) (4 TeV)

Energy ↔ Velocity

(250 km/h)

Bike (15-70 km/h)

Sport Car

Kimi Raikkonen (F1 GP Monza 2005 370.1 km/h)

Maglev Train (China 2003,

501 km/h)

F-14 TOMCAT (980-2400 km/h)

ISS (~ 27500 km/h)

Millennium Falcon Speed of Light

Sources:

ISS: http://www.esa.int/Our_Activities/Human_Spaceflight/International_Space_Station/ISS_International_Space_Station CERN acceleratos:<http://home.web.cern.ch/about/accelerators> TRIUMF: www.triumf.ca Maglev: <http://en.wikipedia.org/wiki/Maglev> Kimi: <http://www.formulapassion.it/2014/08/f1-monza-record-del-tempio-della-velocita/> F14: <http://www.museumofflight.org/aircraft/grumman-f-14a-tomcat>

Note: (WRONG) Assumption 1 MeV = 1 km/h 1 MeV proton → ~ 50x10⁶ km/h

GE PETtrace cyclotron

3D Monte Carlo model of the 18F-target (GE Healthcare, Uppsala, Sweden)

3D Monte Carlo model of the PETtrace cyclotron (GE Healthcare, Uppsala, Sweden)

Model of the Bunker

Section of the FLUKA Monte Carlo model and comparison with the original technical drawing of the bunker.

Model of the Bunker

3D Monte Carlo model of the S. Orsola-Malpighi cyclotron vault. Detail of the pipes that contain the delivery lines, the RF cables, the control cables, etc.

Validation: Production of ¹⁸F

Three different set of defaults, predefined transport settings for the most common problems, were compared to find the optimal combination of physical and transport parameters and cpu-time usage.

- \triangleright NEW-DEFA in which reasonable minimal set of physical mechanisms are enabled;
- HADROTHE for hadrotherapy calculations;
- \triangleright PRECISO for maximum precision simulations.

Processor: i7-3630QM *N° core:* 4 (8 thread) *N° runs:* 8

The saturation yield for the very well-known reaction *¹⁸O(p,n)¹⁸F* calculated with FLUKA was compared with the experimental value and the recommended saturation yield (A₂) in the IAEA database for medical radioisotopes production. A target of a water solution (1.3 g) 97% enriched in 18 O and a 16,5 MeV pencil beam were simulated in a geometry independent case.

$$
IAEA A_2 @ 16,5 MeV \longrightarrow 13078 \pm 10\% MBq/\mu A
$$

Validation: Production of ¹⁸F

$$
A(EOB) = A_{sat} \cdot \left(1 - e^{-\lambda \cdot t_{irr}}\right) \quad \boxed{\qquad}
$$

$$
Y = \frac{A_{sat}}{I_{irr}} = \frac{A(EOB)}{I_{irr} \cdot (1 - e^{-\lambda \cdot t_{irr}})}
$$

Note:

• *Y corresponds to IAEA A² value*

• *A(EOB)=A(1h-1*m*A) corresponds to IAEA A¹ value*

Ref: Infantino, A., Marengo, M., Baschetti, S., Cicoria, G., Longo Vaschetto, V., Lucconi, G., Massucci, P., Vichi, S., Zagni, F., Mostacci, D., 2014. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field. Radiation Physics and Chemistry, Manuscript submitted for publication.

Validation: neutron dose

R. Gallerani et al. *Neutron production in the operation of a 16.5 MeV PETtrace cyclotron*. Progress in Nuclear Energy. 50, 939-943, **2008**.

Validation: neutron dose

- \checkmark Measurements performed at the same points as in *R. Gallerani et al*.
- \checkmark A neutron rem-counter FHT-752 (Thermo Scientific) based on a BF_3 proportional-counter and a PEmoderator, calibrated in H*(10).
- \checkmark A set of 12 dosimeters for fast neutrons (CR-39).
- \checkmark Irradiation tests were conducted with values of integrated current between 0.005 and 0.0016 μ Ah.

Results of the Simulations

Assessment of the neutron dose field around the GE PETtrace cyclotron. Left: Neutron dose field over the bunker (5 cm pitch cartesian mesh). *Right: Detail of the neutron dose field around the cyclotron (cylindrical mesh)*

Simulations vs. Measurements

Simulations vs. Measurements

Note: Monte Carlo uncertainties have a stochastic nature (random uncertainties)

Input Parameters

• *DEFAULTS:* NEW-DEFA.

- \triangleright Transport of electrons, positrons and photons enabled
- Low energy neutron (≤20 MeV) transport on down to thermal energies included;
- Delta ray production enabled
- Heavy particle bremsstrahlung activated with explicit photon production above 1 MeV;
- Heavy particle e+/e- pair production activated with full explicit production
- … and more

• *PHYSICS & TRANSPORT:*

- \triangleright Coalescence and Evaporation enabled;
- \triangleright EMFCUT (e & γ thresholds)
- \triangleright Protons transported down to 1 MeV;
- \triangleright FLUKAFIX set to 0.01 (not always)
- \triangleright Irradiation profile of 1h @ 1 μ A proton current.

• *SCORING:*

- DOSE-EQ from neutrons/photons (USRBIN)
- Activation (RESNUCLE)
- Proton/Neutron spectra (USRTRACK)
- Proton current (USRBDX)
- **PRIMARY:** 10⁹ primary particles simulated.

Production of radioisotopes

Prediction of ⁸⁹Zr production using the Monte Carlo code FLUKA

A. Infantino^a, G. Cicoria^b, D. Pancaldi^b, A. Ciarmatori^b, S. Boschi^c, S. Fanti^b, M. Marengo^b, D. Mostacci^{a,*}

^a University of Bologna, Montecuccolino Laboratory, via dei Colli 16, I-40136 Bologna, Italy

^b Department of Medical Physics, University Hospital, S.Orsola—Malpighi, Bologna, Italy

^c PET Radiopharmacy Unit, Department of Nuclear Medicine, University Hospital, S.Orsola-Malpighi, Bologna, Italy

*Ref: A. Ciarmatori, G. Cicoria, D. Pancaldi, A. Infantino, S. Boschi, S. Fanti, M. Marengo. *Some experimental studies on ⁸⁹Zr production*. Radiochimica Acta, 99, 1-4, **2011**.

AMATERIAL

EXAMPLE 2

 $Z:42$

Production of 99mTc

Simulation setup

- ≥ 100 µm thick natMo foil
- 100 μ m thick 99.01 % enriched ¹⁰⁰Mo foil

Mat: 98Mo v

- 1 mm thick n ^{at}MoO₃ pellet
- ≥ 1 mm thick 99.01 % enriched ¹⁰⁰MoO₃ pellet (including impurities reported in the batch certificate)

 $A:$ 98

LowMat: Mo. Natural Molybdenum (2), 296K

Target assembly for irradiation of MoO3 pellets

Beam parameters:

 $FWHM_x=0.71$ cm, $FWHM_y=0.51$ cm, $FWHM_{\Lambda E} = 0.0785$ MeV, $FWHM_{\Lambda\Phi} = 0.001$ mrad On average 79.8 % of the proton current extracted hits the target material (~20 % on the collimator).

p: 10.22

p: 10.22

 $p: 10.22$

 $p: 10.22$ dE/dx : \blacktriangledown

M2:94Mo v

M4:96Mo 1

M6:98Mo 1

 dE/dx : \blacktriangledown

 dE/dx : \blacktriangledown

 dE/dx : \blacktriangledown

Solid target station and target assembly employed in preliminary tests: 100 μm thick foil of ^{nat}Mo

Production of 99mTc

WHAT(2) = flag for "patching" isomer production, while waiting for a better production model *Source: FLUKA manual 2011, RADDECAY card.*

"Patching isomers" in FLUKA will simply split the production of a specific isotope in (half-half) between ground and isomeric state (if it exists)".

Production of 99mTc

PRELIMINARY RESULTS

*Target assembly: copper backing and 100*m*m thick natural-Mo foil.*

On Average: 0.664 ± 0.003

**Calculated convoluting the proton flux with cross section (TALYS).*

G. Lucconi, F. Carnaccini, E. Galloni, A. Infantino, F. Zagni, G. Cicoria, D. Pancaldi, M. Marengo. Development of a solid target for cyclotron production of 99mTc. Eur J Nuc Med Mol Imaging 41 (Suppl 2):S151-S705 **2014**.

Planning of cyclotron facilities

3D Monte Carlo model of the TR19 cyclotron (ACSI, Richmond, Canada).

Planning of cyclotron facilities

Original technical drawing of the «Sacro Cuore – Don Calabria» Hospital PET facility. Negrar (VR), Italy.

Planning of cyclotron facilities $\frac{1}{R}$

Detail of the floating floor, the walls and the ducts containing the delivery lines, the RF cables, the control cables, etc.

Planning of cyclotron facilities

Activation of Air: ⁴¹Ar

*⁴⁰Ar(n,*g*) ⁴¹Ar*

⁴¹Ar ($t_{1/2}$ = 109.34 min) is produced by the activation of air due to secondary thermal neutron flux during irradiation.

 $\sigma_{(n,\gamma)}$ ~ 660 mb @ 0.025 eV (ENDF/B-VII.0)

Monte Carlo model of one of the experimental setup adopted.

Simulation setup

- *Direct assessment (RESNUCLE) and convolution Fluence-Cross Section*
	- **Total net air volume** (assessed using SimpleGeo, $~120 \text{ m}^3$);
	- **Marinelli beakers** (1000 cm³) in different position;
	- **Volumes of 1 m³** centered in the Marinelli's positions;

$$
A_{sat} \cong \rho V \omega_x \frac{N_A}{A_x} N_P \sum_{i=260}^{1} F(E_i) \sigma_{xy}(E_i) \Delta E_i
$$

"In the FLUKA neutron cross section library, the energy range up to 20 MeV is divided into 260 energy groups of approximately equal logarithmic width (31 of which are thermal)." Source: FLUKA manual 2011

Activation of Air: ⁴¹Ar

Note: FD = FLUKA Direct assessment; FC = FLUKA Convolution fluence-CS

Open questions:

- What kind of CS are used for Argon selecting «AIR» as material?
- Self-Shielded case? (*Manual, 10.1.1 Possible artefacts*)

(ongoing testing…)

Proton Therapy: Degrader

Wedge and other Flair body are not (yet) implemented in SimpleGeo (and viceversa i.e. Torus)

Other incompatibilities/problems found are:

- Import of a geometry with ROT-DEFINI/translat defined
- DaVis3D: import USRBIN with R Φ Z mesh
- PIPSICAD3D: Problem in running PipsiCAD_SimpleGeo.linux interface (useful if directly implemented in Flair!!!)

Proton Therapy: Degrader

3D simplified Monte Carlo model of a degrader for proton therapy applications.

Wedge thickness modelled

**Calculated using SRIM*

Section of the FLUKA Monte Carlo model of the degrader.

Proton Therapy: Degrader

Environmental neutron dose equivalent H*(18) - Ep=200MeV

Preliminary assessment of the neutron dose field around a proton therapy degrader: results obtained simulating an outcoming proton energy of 200 MeV.

PIPSICAD 3D plugin. Tracks indicate the different particle produced during irradiation: protons (red), electrons (green), photons, (yellow) and neutrons (blue). Fade of tracks enabled.

Main problems encountered

Activation from protons below 20 MeV

- *Some differences from experimental and simulated results in particular for liquid and gaseous materials*
- *Thermal and Fluid-dynamics effects? Chemical reactions with target material/target body? (Real) Low Energy regime?*
- *Isomers: accounting a correct production branching ratio*

Activation from neutrons below 20 MeV

- *Production of ⁴¹Ar. Simulations convergent in the different cases but:*
	- *Possible artefacts? Self-Shielding? Only a problem of the material definition?*

Compatibility Flair/SimpleGeo

- *Body missing between the two programs (wedges, torus, etc)*
- *Problems in running at best some plugins (importing R*F*Z mesh, running of PipsiCAD_SimpleGeo.linux interface)*

Collaboration UniBo - S. Orsola

Department of Industrial Engineering (DIN), Montecuccolino Laboratory, University of Bologna

Professors D. Mostacci

PhD Students

A. Infantino, S. Vichi

MSc Students

V. Longo Vaschetto

Medical Physics Department, S. Orsola-Malpighi Hospital, Bologna

Nuclear Medicine Physicists M. Marengo, G. Cicoria

Physics Technologists

D. Pancaldi

PhD Students G. Lucconi, F. Zagni

Contact: angelo.infantino@unibo.it