MATRIX: a 15 ps resistive interpolation TDC ASIC based on a novel regular structure

J. Mauricio, D. Gascón, D. Ciaglia, S. Gómez, G. Fernández, A. Sanuy

jmauricio@icc.ub.edu

SiUB & ICC - Universitat de Barcelona
Outline

• Motivation

• MATRIX TDC Design Overview

• Measurement Results

• Conclusions & Future Work
Motivation

• **SiUB PET ASIC ecosystem:**
 – Broad experience in fast-timing ASIC designs.
 - FlexToTv1, FlexToTv2.
 - < 10-ps jitter floor.
 - 100-ps SPTR.
 - < 8% energy resolution.
 - Low power consumption (~10 mW/ch).
 - **Continuous Time Binary Valued outputs.**

• **Challenge:**
 – Time-of-Arrival (ToA) TDC for FlexToT timing signal output.
 - Resolution \(<\) FlexToT SPTR \(\rightarrow\) 10 ps < LSB < 20 ps.
 - Very low power consumption (~10 mW/ch, full chip).
 - Jitter & timing resolution \(~\) 1 LSB.
 - **Technology:** 180 nm.
Motivation

First TDC design temptative:
- 4-ch TDC implementation based on state of the art.
 - An adaptation of L. Perktold and J. Christiansen TDC [1].
 - 2 levels of fine TDC (sub-clock):
 - 1st level: tunable buffers ~ 120 ps delay (180 nm technology).
 - 2nd level: resistive interpolation.
 - Number of resistive interpolation stages:
 - 8 stages per buffer: LSB ~ 15 ps.
 - Power consumption: ~18 mW (schematic level), ~4.5 mW/ch.
 - Almost half of the power budgeted spent on this block.
 - Resistive interpolation problems:
 - Require iterative adjust.
 - Mismatch issues.
 - Difficult to scale.

L. Perktold and J. Christiansen, 2013
Motivation

- Design potentially out of specifications:
 - Simulation results at **schematic** level:
 - Post-layout ~ 2X power consumption.
 - 1st level tunable buffers would increase with parasitics.
Outline

- Motivation
- MATRIX TDC Design Overview
- Measurement Results
- Conclusions & Future Work
MATRIX TDC Design Overview

- A novel alternative was proposed:
 - Resistive Interpolation Mesh Circuit (RIMC).
 - Patent application EP16382039.2.
MATRIX TDC Design Overview

- **A novel alternative was proposed:**
 - Resistive Interpolation Mesh Circuit (RIMC).
 - Patent application EP16382039.2.

![Chronogram of the RIMC clock nodes and normalized ideal transfer function.](image)

Table:

<table>
<thead>
<tr>
<th>ROW</th>
<th>TDC sub-delay normalized transfer function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Key Parameters:

- \(T_{Cycle} = 1250 \text{ ps} \)
- \(T_{Row} = 90 \text{ ps} \)
- \(T_{Col} = 15 \text{ ps} \)
- Overlap = 33%

Diagram Notes:

- Sub-gate delay = 15 ps
- Gate delay = 90 ps

J.Mauricio - UB
MATRIX TDC Design Overview

• **Benefits:**

 – Reduced power consumption and area:
 ▪ Few components (-50%): sub-delays covers half clock period.

 – Excellent process variability properties:
 ▪ Very regular design (less neighboring effects).
 ▪ Mesh structure averages variability.

 – Scalability and reusability:
 ▪ Few changes on the Delay Element to modify TDC resolution/performance.

 – Very low design time:
 ▪ Simple atomic structure: Delay Element (starved inverter + resistor).
 ▪ The structure is repeated in 2D.

• **Drawbacks:**

 – Layout issues related to the 2D structure:
 ▪ Track congestion.
 ▪ Track lengths.
MATRIX TDC Design Overview

• PLL:
 – Supports $M = 4 / 8 / 16$.
 – PLL Clock Frequency = 800 MHz.
 – The RIMC is the VCO.

• Coarse Counter:
 – 10-Bit natural counter at 800 MHz.
 – Multilevel approach:
 ▪ 2-bit counter at 800 MHz.
 ▪ 8-bit counter at 200 MHz.
 ▪ Clock domain synchronization to avoid metastability issues.
 – Full custom design.
MATRIX TDC Design Overview

- **Front-End Readout (Fine Interpolator):**
 - 4 channels.
 - Captures the polarity of the RIMC nodes.
 - Encodes the column(s) where transition(s) occurs.
 - It also gathers transition type (rising or falling).

- **Serializer:**
 - Two output types: Single Ended and LVDS.
 - Data rate:
 - 10 MHz sustained rate per channel (200 Mbps).

Schematic of Row #0 of the Front-End Readout
MATRIX TDC Design Overview

- **Back-End Readout:**
 - Syncronize Fine Interpolator and Coarse Counter data.
 - Coarse Counter provides a phase bit to align counters.
 - 4-Word per-channel FIFO:
 - TDC dead time = 20 ns.
 - Algorithm:
 - Row: 0~6 (3 bits).
 - Column: 0~7 (3 bits).
 - Stage ID = Row * 8 + Column
 - Fine stage computation (8 bits, 0~219 LSBs):
 - Two hits (overlapping): Fine Stage ID = ID₁ + ID₂
 - One hit (no overlapping): Fine Stage ID = 2 * ID₁
 - If phase bit is active, Fine Stage ID += 110

Full Scale = 1250 ps
1250 ps = 220 LSB
1 LSB = 5.68 ps (avg)
MATRIX TDC Design Overview:

- Front-End Readout size: 280x215 μm2.
- Back-End Readout size: 630x215 μm2.
Outline

• Motivation

• MATRIX TDC Design Overview

• Measurement Results

• Conclusions & Future Work
Measurement Results

- **Chip calibration:**
 - Density code test:
 - 100K random pulse shots following an uniform distribution.
 - The number of hits per bin will indicate the bin size.
 - Used to calibrate MATRIX channels.
 - Test results:
 - Almost all the bins in the range between 0 and 25 ps.
 - Uncalibrated $\sigma_{DNL} = 7$ ps.

![Chip #1 - Ch0 density code test](chart.png)

Outlier
Measurement Results

- Linearity & Jitter test:
 - CLK REF \rightarrow TIME$_i$ sweep:
 - Start: 0 ps, stop: 1245 ps.
 - Step: 5 ps. #steps = 250.
 - N acquisitions per step.
 - Jitter measurement (single shot precision):
 - Stdev of the N ACQ of each step.
 - Linearity measurement:
 - Average of the N ACQ of each step.

Linearity & Jitter test setup.
Measurement Results

- **Linearity - DNL:**

 - **Uncalibrated:**
 - DNL = ± 5.1 ps
 - RMS DNL < 1.4 ps

 - **Calibrated:**
 - DNL = ± 4.7 ps
 - RMS DNL < 1.1 ps
Measurement Results

- Linearity - INL:

 - Uncalibrated:
 - $\text{INL} = \pm 21.9 \text{ ps}$
 - RMS INL $< 13.2 \text{ ps}$

 - Calibrated:
 - $\text{INL} = \pm 10.2 \text{ ps}$
 - RMS INL $< 3.7 \text{ ps}$
Measurement Results

- **Jitter (pulse generator + MATRIX TDC):**

<table>
<thead>
<tr>
<th>Chip #1 - Ch0 step Jitter - PLL M = 16 (uncalibrated)</th>
<th>Chip #1 - Ch0 step Jitter - PLL M = 16 (calibrated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chip #1 - Ch0 step Jitter - PLL M = 8 (uncalibrated)</th>
<th>Chip #1 - Ch0 step Jitter - PLL M = 8 (calibrated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chip #1 - Ch0 step Jitter - PLL M = 4 (uncalibrated)</th>
<th>Chip #1 - Ch0 step Jitter - PLL M = 4 (calibrated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J.Mauricio - UB
Measurement Results

- Jitter (pulse generator + MATRIX TDC):

<table>
<thead>
<tr>
<th>PLL M</th>
<th>TDC Jitter (ps)</th>
<th>Uncalibrated</th>
<th>Calibrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>9.7</td>
<td>9.3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>12.3</td>
<td>11.7</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>21.2</td>
<td>20.6</td>
</tr>
</tbody>
</table>

- TDC jitter is dominated by PLL.
 - M = 4 has a natural frequency (ω_n) 2X M = 8 and thus jitter improves.
 - There is margin for the improvement in further MATRIX versions.

\[
\omega_n = \sqrt{\frac{K_{VCO} \cdot I_{CP}}{M \cdot C_1}}
\]

\[K_{VCO} = VCO \text{ gain } \left[\frac{Hz}{V} \right]\]

\[I_{CP} = CP \text{ current } [A]\]

\[M = fb \text{ divisor}\]

\[C_1 = large \text{ loop – filter } \text{ cap } [F]\]
Measurement Results

- **Power Consumption:**
 - Measurements are slightly better than simulations.
 - Three operating modes:
 - **Standby.** Reference clock input disabled: 0.76 mW.
 - “**Standby**”. On-chip PLL still working: 30.1 mW.
 - **Low Power.** LVDS drivers with minimum differential swing: 45.2 mW.
 - Default: 56.3 mW.

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Technology</th>
<th>Bin size</th>
<th>Time Res.</th>
<th>Pow/ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Russo et al. (2011) [2]</td>
<td>180 nm</td>
<td>41 ps</td>
<td>14 ps</td>
<td>25 mW</td>
</tr>
<tr>
<td>L. Perktold et al. (2014)[1]</td>
<td>130 nm</td>
<td>5 ps</td>
<td>3 ps</td>
<td>43 mW</td>
</tr>
<tr>
<td>MATRIX (2016)</td>
<td>180 nm</td>
<td>15 ps</td>
<td>4 ps</td>
<td>11.3 mW</td>
</tr>
</tbody>
</table>
Outline

• Motivation

• MATRIX TDC Design Overview

• Measurement Results

• Conclusions & Future Work
Conclusions & Future Work

• **Conclusions:**
 – The new concept was successfully proved.
 ▪ Design, prototype & test.
 – Performance:
 ▪ Similar to other proposals. 4 ps RMS time resolution.
 ▪ Outstanding low power consumption. 11.3 mW/channel.
 ▪ Jitter should be improved. 10 ps for M=4, 20 ps for M=16.
 ▪ We should consider the impact of wide bins (>30 ps) for some applications.

• **Future Work:**
 – MATRIX V2 with improved jitter.
 – SoC PET ASIC (HR-FlexToT):
 ▪ Analog signal processing.
 ▪ MATRIX TDC.
 ▪ Power consumption and cost effectiveness.
References

1. L. Perktold and J. Christiansen, “A multichannel time-to-digital converter ASIC with better than 3 ps RMS time resolution”; 2014 JINST 9 C01060

THANK YOU FOR YOUR ATTENTION!
BACKUP SLIDES...
• **Res. Interp. Mesh Delay Element:**

 – Full custom design.

 – Design For Manufacturability (DFM) techniques to minimize systematic process variability:

 ▪ Dummy structures.
 ▪ Symmetric buffer design.
 ▪ 1-D poly with constant pitch.
 ▪ Continuous rectangular diffusions.
 ▪ Dummy resistor.

 – **Dummy transistors (DPR, DNR...):**

 ▪ More transistors allowed -if necessary-.
Res. Interp. Mesh Column design:

- DEs are abutted to improve DFM.
- DE stages are interleaved to equalize interconnection lengths.
- The matrix building is as easy as concatenate the column N times.

Fig 5: Schematic sample (left), Layout sample (middle) and layout interconnection diagram (right).
RIMC + TCM Layouts

- **Front-end Readout Improvements:**
 - Track lengths were optimized.
 - TDC channels were stretched.
 - Dedicated horizontal power rails were removed.
 - Track capacitance decreased by factor 3 as a consequence (75 fF \rightarrow 25 fF).

J.Mauricio - UB
Simulation Results:

- **Front-End Readout (fine interpolation) transfer function:**
 - Phase between timing signal and clock is swept in steps of 1 ps along the 1.25 ns clock period.
 - For each event, we have:
 - The row(s) number(s) where the transition occurred ($NEW_EVENT<6:0>$).
 - The transition type: rising or falling ($CLK_PHASE<6:0>$).
 - Encoded row data ($DOUT0<2:0>$, $DOUT1<1:0>$, … $DOUT6<1:0>$).
Simulation Results:

- Front-End Readout (fine interpolation) transfer function:

Front-End Readout (fine interpolation) transfer function output.

J.Mauricio - UB
MATRIX TDC Detailed Block Diagram

CLOCK SYNTHESIZER

FRONT-END READOUT

COARSE COUNTER

BACK-END READOUT

SERIALIZER x4

SERIALIZER x4

COARSE_OVF

J.Mauricio - UB
• **2-bit counter features:**

 – Maximum parallelism.

 – The worst path is an XOR2.

 – Overflow signal is used to increase the 8-bit counter.
Coarse Counter design

- Coarse counter features:
 - 2-level approach: 2-bit counter @ 800 MHz, 8-bit counter @ 200 MHz.
 - Counter values are resynchronized to avoid metastability issues.
 - Synchronous reset from an external signal.

Schematic of the 800 MHz 10-bit counter
Coarse Counter design

- Coarse counter channel capture features:
 - ToA signal (TIME) is discretized (timeResynch) at 800 MHz.
 - Discretized signal (synchronous) captures coarse counter safely.
 - *LSB_CHANGE* gives information about the phase (Coarse/Fine alignment).
Coarse Counter design

- Coarse counter. Conclusions:
 - Power consumption: ~3 mW.
 - Reliability problems for supply voltages < 1.7 V at high temperatures.
This is the core of the chip.

The rest are capacitors decoupling capacitors.

TDC V1 chip layout. Dimensions: X=2218 um, Y=2221 um.
Code Density Test

• How it works?
 – Two uncorrelated pulse generators:
 ▪ One for the CLK reference (50 MHz).
 ▪ The second for uncorrelated timing pulses (12.45 KHz).
 ▪ In theory, all the TDC bins have the same probability to appear.
 ◦ Wider bins indicate linearity issues.
TDC INL Statistics

TDC INL of 24 channel samples (RMS and range)

Uncal INL +/- (ps)
Uncal INL RMS (ps)
Cal INL +/- (ps)
Cal INL RMS (ps)

3.7 ps RMS
±10.2 ps
13.2 ps RMS
±21.9 ps
TDC DNL Statistics

TDC DNL of 24 channel samples (RMS and range)

DNL (ps)

±5.1 ps

±4.7 ps

1.4 ps RMS

1.1 ps RMS

J. Mauricio - UB