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Motivation

• SiUB PET ASIC ecosystem:

– Broad experience in fast-timing ASIC designs.

 FlexToTv1, FlexToTv2.

 < 10-ps jitter floor.

 100-ps SPTR.

 < 8% energy resolution.

 Low power conspumption (~10 mW/ch).

 Continuous Time Binary Valued outputs.

• Challenge:

– Time-of-Arrival (ToA) TDC for FlexToT timing signal output.

 Resolution << FlexToT SPTR  10 ps < LSB < 20 ps.

 Very low power consmption (~10 mW/ch, full chip).

 Jitter & timing resolution ~ 1 LSB.

 Technology: 180 nm.
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FlexToTv2 ASIC (0.35um BiCMOS)



Motivation

• First TDC design temptative:

– 4-ch TDC implementation based on state of the art.

 An adaptation of L. Perktold and J. Christiansen TDC [1].

 2 levels of fine TDC (sub-clock):

o 1st level: tunable buffers ~ 120 ps delay (180 nm technology).

o 2nd level: resistive interpolation.

 Number of resistive interpolation stages:

o 8 stages per buffer: LSB ~ 15 ps.

 Power consumption: ~18 mW (schematic level), ~4.5 mW/ch.

o Almost half of the power budged spent on this block.

 Resistive interpolation problems:

o Require iterative adjust.

o Mismatch issues.

o Difficult to scale.
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L. Perktold and J. Christiansen, 2013
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Motivation

• Design potentially out of specifications:

– Simulation results at schematic level:

 Post-layout ~ 2X power consumption.

 1st level tunable buffers would increase with parasitics.
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MATRIX TDC Design Overview

• A novel alternative was proposed:

– Resistive Interpolation Mesh Circuit (RIMC).

 Patent application EP16382039.2.
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MATRIX TDC Design Overview

• A novel alternative was proposed:

– Resistive Interpolation Mesh Circuit (RIMC).

 Patent application EP16382039.2.

8

0.000

0.200

0.400

0.600

0.800

1.000

N
o

rm
a

liz
e

d
 T

D
C

 c
o

u
n

ts

TDC sub-delay normalized transfer function

ROW 6

ROW 5

ROW 1

ROW 3

ROW 4

ROW 2

ROW 0

TCycle / 2

Chronogram of 
the RIMC clock

nodes and
normalized ideal 
transfer function.

Sub-gate delay = 15 ps

TCycle= 1250 ps

TRow = 90 ps

TCol = 15 ps

Overlap = 33%

Gate delay = 90 ps

J.Mauricio - UB



MATRIX TDC Design Overview

• Benefits:

– Reduced power consumption and area:

 Few components (-50%): sub-delays covers half clock period.

– Excellent process variability properties:

 Very regular design (less neighboring effects).

 Mesh structure averages variability. 

– Scalability and reusability:

 Few changes on the Delay Element to modify TDC resolution/performance.

– Very low design time:

 Simple atomic structure: Delay Element (starved inverter + resistor).

 The structure is repeated in 2D.

• Drawbacks:

– Layout issues related to the 2D structure:

 Track congestion.

 Track lengths.
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MATRIX TDC Design Overview
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MATRIX TDC Design Overview

• PLL:
– Supports M = 4 / 8 / 16.

– PLL Clock Frequency = 800 MHz.

– The RIMC is the VCO.

• Coarse Counter:

– 10-Bit natural counter at 800 MHz.

– Multilevel approach:

 2-bit counter at 800 MHz.

 8-bit counter at 200 MHz.

 Clock domain synchronization to avoid metastability issues.

– Full custom design. 
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MATRIX TDC Design Overview

• Front-End Readout (Fine Interpolator):
– 4 channels.

– Captures the polarity of the RIMC nodes.

– Encodes the column(s) where transition(s) occurs.
 It also gathers transition type (rising or falling). 

• Serializer:

– Two output types: Single Ended and LVDS.

– Data rate:

 10 MHz sustained rate per channel (200 Mbps).
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MATRIX TDC Design Overview

• Back-End Readout:

– Syncronize Fine Interpolator and Coarse Counter data.

 Coarse Counter provides a phase bit to align counters.

– 4-Word per-channel FIFO:

 TDC dead time = 20 ns.

– Algorithm:

 Row: 0~6 (3 bits).

 Column: 0~7 (3 bits).

 Fine stage comptuation (8 bits, 0~219 LSBs):

o Two hits (overlapping):    Fine Stage ID = ID1 + ID2

o One hit (no overlapping): Fine Stage ID = 2 * ID1

o If phase bit is active, Fine Stage ID += 110 
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Full Scale = 1250 ps

1250 ps = 220 LSB

1 LSB = 5.68 ps (avg)

Stage ID = Row * 8 + Column
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MATRIX TDC Design Overview:

MATRIX TDC core layout.

• Front-End Readout size: 280x215 um2.

• Back-End Readout size: 630x215 um2.

BACK-END READOUT

& SPI INTERFACE

POWER RAILS

POWER RAILS

RIMC
COARSE

COUNT

FRONT-END READOUT

FRONT-END READOUT

PLL

910 µm

2
1
5
 µ

m

630 µm280 µm

J.Mauricio - UB 14



Outline

• Motivation

• MATRIX TDC Design Overview

• Measurement Results

• Conclusions & Future Work



Measurement Results

• Chip calibration:

– Density code test:

 100K random pulse shots following an uniform distribution.

 The number of hits per bin will indicate the bin size.

 Used to calibrate MATRIX channels.

– Test results:

 Almost all the bins in the range between 0 and 25 ps.

 Uncalibrated σDNL = 7 ps.
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Measurement Results

• Linearity & Jitter test:

– CLK REF  TIMEi sweep:

 Start: 0 ps, stop: 1245 ps.

 Step: 5 ps. #steps = 250.

 N acquisitions per step.

– Jitter measurement (single shot precision):

 Stdev of the N ACQ of each step.

– Linearity measurement: 

 Average of the N ACQ of each step.
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Measurement Results

• Linearity - DNL:
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– Uncalibrated:

 DNL = ± 5.1 ps

 RMS DNL < 1.4 ps

– Calibrated:

 DNL = ± 4.7 ps

 RMS DNL < 1.1 ps
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Measurement Results

• Linearity - INL:

19

– Uncalibrated:

 INL = ± 21.9 ps

 RMS INL < 13.2 ps

– Calibrated:

 INL = ± 10.2 ps

 RMS INL < 3.7 ps
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Measurement Results

• Jitter (pulse generator + MATRIX TDC):
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Measurement Results

• Jitter (pulse generator + MATRIX TDC):

– TDC jitter is dominated by PLL.

 M = 4 has a natural frequency (𝝎𝒏) 2X M = 8 and thus jitter improves.

 There is margin for the improvement in further MATRIX versions.
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PLL M
TDC Jitter (ps)

Uncalibrated Calibrated

4 9.7 9.3

8 12.3 11.7

16 21.2 20.6
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𝑴 = 𝒇𝒃 𝒅𝒊𝒗𝒊𝒔𝒐𝒓
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𝑯𝒛

𝑽
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Measurement Results

• Power Consumption:

– Measurements are slightly better than simulations.

– Three operating modes:

 Standby. Reference clock input disabled: 0.76 mW.

 “Standby”. On-chip PLL still working: 30.1 mW.

 Low Power. LVDS drivers with minimum differential swing: 45.2 mW. 

 Default: 56.3 mW.
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Proposal Technology Bin size Time Res. Pow/ch

S. Russo et al. (2011) [2] 180 nm 41 ps 14 ps 25 mW

L. Perktold et al. (2014)[1] 130 nm 5 ps 3 ps 43 mW

P. Keränen et al. (2015) [3] 350 nm - 5 ps 80 mW

MATRIX (2016) 180 nm 15 ps 4 ps 11.3 mW
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Conclusions & Future Work

• Conclusions:

– The new concept was successfully proved.

 Design, prototype & test.

– Performance:

 Similar to other proposals. 4 ps RMS time resolution. 

 Outstanding low power consumption. 11.3 mW/channel.

 Jitter should be improved. 10 ps for M=4, 20 ps for M=16.

 We should consider the impact of wide bins (>30 ps) for some applications.

• Future Work:

– MATRIX V2 with improved jitter.

 Available in early 2017.

– SoC PET ASIC (HR-FlexToT):

 Analog signal processing.

 MATRIX TDC.

 Power consumption and cost effectiveness.
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• Res. Interp. Mesh Delay Element:

– Full custom design.

– Design For Manufacturability (DFM) techniques to minimize systematic 

process variability:

 Dummy structures.

 Symmetric buffer design.

 1-D poly with constant pitch.

 Continuous rectangular diffusions.

 Dummy resistor.

– Dummy transistors (DPR, DNR…):
 More transistors allowed -if necessary-.

RIMC Layout

Delay Element layout (~10 x 12.5 um2).

Delay Element symbol
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• Res. Interp. Mesh Column design:

– DEs are abutted to improve DFM.

– DE stages are interleaved to equalize 

interconnection lengths.

– The matrix building is as easy as 

concatenate the column N times.

RIMC Layout

Fig 5:  Schematic sample (left) , Layout sample 
(middle) and layout interconnection diagram (right).
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• Front-end Readout Improvements:

• Track lengths were optimized.

• TDC channels were stretched.

• Dedicated horizontal power rails were removed.

• Track capacitance decreased by factor 3 as a consequence (75 fF  25 fF).

RIMC + TCM Layouts
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• Front-End Readout (fine interpolation) transfer function:

– Phase between timing signal and clock is swept in steps of 1 ps along the 

1.25 ns clock period.

– For each event, we have:

 The row(s) number(s) where the transition occurred (NEW_EVENT<6:0>).

 The transition type: rising or falling (CLK_PHASE<6:0>).

 Encoded row data (DOUT0<2:0>, DOUT1<1:0>, … DOUT6<1:0>).

Simulation Results:
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• Front-End Readout (fine interpolation) transfer function:

Simulation Results:

Front-End Readout (fine interpolation) transfer function output. 
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MATRIX TDC Detailed Block Diagram
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• 2-bit counter features:

– Maximum parallelism.

– The worst path is an XOR2.

– Overflow signal is used to increase the 8-bit counter.

Coarse Counter design

Schematic of the 800 MHz 2-bit counter
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• Coarse counter features:

– 2-level approach: 2-bit counter @ 800 MHz, 8-bit counter @ 200 MHz.

– Counter values are resynchronized to avoid metastability issues.

– Synchronous reset from an external signal.

Coarse Counter design

Schematic of the 800 MHz 10-bit counterJ.Mauricio - UB



• Coarse counter channel capture features:

– ToA signal (TIME) is discretized (timeResynch) at 800 MHz.

– Discretized signal (synchronous) captures coarse counter safely.

– LSB_CHANGE gives information about the phase (Coarse/Fine alignment).

Coarse Counter design

Schematic of the per-channel Coarse Counter value captureJ.Mauricio - UB



• Coarse counter. Conclusions:

• Power consumption: ~3 mW.

• Reliability problems for supply voltages < 1.7 V at high temperatures.  

Coarse Counter design

Coarse counter layout (83 x 70 um2).
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MATRIX v1 Picture:

TDC V1 chip layout. Dimensions: X=2218 um, Y=2221 um.

This is the
core of the
chip.

The rest are 
capacitors
decoupling
capacitors.
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Code Density Test

• How it works?

– Two uncorrelated pulse generators:

 One for the CLK reference (50 MHz).

 The second for uncorrelated timing pulses (12.45 KHz).

 In theory, all the TDC bins have the same probability to appear.

o Wider bins indicate linearity issues.
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Code density test setup.
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TDC INL Statistics
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