

MATRIX: a 15 ps resistive interpolation TDC ASIC based on a novel regular structure

Siub

<u>J. Mauricio,</u> D. Gascón, D. Ciaglia, <mark>S. Gómez, G. Fernández, A. Sanuy</mark>

jmauricio@icc.ub.edu

SiUB & ICC - Universitat de Barcelona

Topical Workshop on Electronics for Particle Physics 2016 Karlsruhe, September 28th 2016

- Motivation
- MATRIX TDC Design Overview
- Measurement Results
- Conclusions & Future Work

Motivation

- SIUB PET ASIC ecosystem:
 - Broad experience in fast-timing ASIC designs.
 - FlexToTv1, FlexToTv2.
 - < 10-ps jitter floor.</p>
 - 100-ps SPTR.
 - < 8% energy resolution.</p>
 - Low power conspumption (~10 mW/ch).
 - Continuous Time Binary Valued outputs.

• Challenge:

- FlexToTv2 ASIC (0.35um BiCMOS)
- Time-of-Arrival (ToA) TDC for FlexToT timing signal output.
 - Resolution << FlexToT SPTR \rightarrow 10 ps < LSB < 20 ps.
 - Very low power consmption (~10 mW/ch, full chip).
 - Jitter & timing resolution ~ 1 LSB.
 - Technology: 180 nm.

Motivation

- First TDC design temptative:
 - 4-ch TDC implementation based on state of the art.
 - An adaptation of L. Perktold and J. Christiansen TDC [1].
 - 2 levels of fine TDC (sub-clock):
 - 1st level: tunable buffers ~ 120 ps delay (180 nm technology).
 - o 2nd level: resistive interpolation.
 - Number of resistive interpolation stages:
 - 8 stages per buffer: LSB ~ 15 ps.
 - Power consumption: ~18 mW (schematic level), ~4.5 mW/ch.
 - Almost half of the power budged spent on this block.
 - Resistive interpolation problems:
 - Require iterative adjust.
 - Mismatch issues.
 - Difficult to scale.

Motivation

- Design potentially out of specifications:
 - Simulation results at **schematic** level:
 - Post-layout ~ 2X power consumption.
 - 1st level tunable buffers would increase with parasitics.

- Motivation
- MATRIX TDC Design Overview
- Measurement Results
- Conclusions & Future Work

- A novel alternative was proposed:
 - Resistive Interpolation Mesh Circuit (RIMC).
 - Patent application EP16382039.2.

Column width (sub-gate delay) > Row width / 8

Delay Element

Sub-gate delay = 15 ps

- A novel alternative was proposed:
 - Resistive Interpolation Mesh Circuit (RIMC).

- Benefits:
 - Reduced power consumption and area:
 - Few components (-50%): sub-delays covers half clock period.
 - Excellent process variability properties:
 - Very regular design (less neighboring effects).
 - Mesh structure averages variability.
 - Scalability and reusability:
 - Few changes on the Delay Element to modify TDC resolution/performance.
 - Very low design time:
 - Simple atomic structure: Delay Element (starved inverter + resistor).
 - The structure is repeated in 2D.

• Drawbacks:

- Layout issues related to the 2D structure:
 - Track congestion.
 - Track lengths.

• PLL:

- Supports M = 4 / 8 / 16.
- PLL Clock Frequency = 800 MHz.
- The RIMC is the VCO.
- Coarse Counter:
 - 10-Bit natural counter at 800 MHz.
 - Multilevel approach:
 - 2-bit counter at 800 MHz.
 - 8-bit counter at 200 MHz.
 - Clock domain synchronization to avoid metastability issues.
 - Full custom design.

Siub

- Front-End Readout (Fine Interpolator):
 - 4 channels.
 - Captures the polarity of the RIMC nodes.
 - Encodes the column(s) where transition(s) occurs.
 - It also gathers transition type (rising or falling).

Schematic of Row #0 of the Front-End Readout

- Serializer:
 - Two output types: Single Ended and LVDS.
 - Data rate:
 - 10 MHz sustained rate per channel (200 Mbps).

- Back-End Readout:
 - Syncronize Fine Interpolator and Coarse Counter data.
 - Coarse Counter provides a phase bit to align counters.
 - 4-Word per-channel FIFO:
 - TDC dead time = 20 ns.
 - Algorithm:
 - Row: 0~6 (3 bits).
 Column: 0~7 (3 bits).
 Stage ID = Row * 8 + Column
 - Fine stage comptuation (8 bits, 0~219 LSBs):
 - Two hits (overlapping): Fine Stage $ID = ID_1 + ID_2$
 - $\circ~$ One hit (no overlapping): Fine Stage ID = 2 * ID₁
 - If phase bit is active, Fine Stage ID += 110

Full Scale = 1250 ps 1250 ps = 220 LSB 1 LSB = 5.68 ps (avg)

Siub

- Front-End Readout size: 280x215 um².
- Back-End Readout size: 630x215 um².

- Motivation
- MATRIX TDC Design Overview
- Measurement Results
- Conclusions & Future Work

- Chip calibration:
 - Density code test:
 - 100K random pulse shots following an uniform distribution.
 - The number of hits per bin will indicate the bin size.
 - Used to calibrate MATRIX channels.
 - Test results:
 - Almost all the bins in the range between 0 and 25 ps.
 - Uncalibrated $\sigma_{DNL} = 7 \text{ ps.}$

Chip #1 - Ch0 density code test

J.Mauricio - UB

- − CLK REF \rightarrow TIME_i sweep:
 - Start: 0 ps, stop: 1245 ps.
 - Step: 5 ps. #steps = 250.
 - N acquisitions per step.
- Jitter measurement (single shot precision):
 - **Stdev** of the N ACQ of each step.
- Linearity measurement:
 - Average of the N ACQ of each step.

Siub

• Linearity - DNL:

- DNL = ± 5.1 ps
- RMS DNL < 1.4 ps</p>

- Calibrated:
 - DNL = ± 4.7 ps
 - RMS DNL < 1.1 ps</p>

Siub

• Linearity - INL:

- Uncalibrated:

- INL = ± 21.9 ps
- RMS INL < 13.2 ps</p>

- Calibrated:
 - INL = ± 10.2 ps
 - RMS INL < 3.7 ps</p>

• Jitter (pulse generator + MATRIX TDC):

Chip #1 - Ch0 step Jitter - PLL M = 8 (uncalibrated)

Chip #1 - Ch0 step Jitter - PLL M = 8 (calibrated)

• Jitter (pulse generator + MATRIX TDC):

PLL M	TDC Jitter (ps)		
	Uncalibrated	Calibrated	
4	9.7	9.3	
8	12.3	11.7	
16	21.2	20.6	

- TDC jitter is dominated by PLL.
 - M = 4 has a natural frequency (ω_n) 2X M = 8 and thus jitter improves.
 - There is margin for the improvement in further MATRIX versions.

$$\omega_n = \sqrt{\frac{K_{VCO} \cdot I_{CP}}{M \cdot C_1}}$$

$$K_{VCO} = VCO \ gain \left[rac{Hz}{V}
ight]$$

 $I_{CP} = CP \ current \ [A]$

 $M = fb \ divisor$

$$C_1 = large \ loop - filter \ cap \ [F]$$

- Power Consumption:
 - Measurements are slightly better than simulations.
 - Three operating modes:
 - Standby. Reference clock input disabled: 0.76 mW.
 - "Standby". On-chip PLL still working: 30.1 mW.
 - Low Power. LVDS drivers with minimum differential swing: 45.2 mW.
 - Default: 56.3 mW.

Proposal	Technology	Bin size	Time Res.	Pow/ch
S. Russo et al. (2011) [2]	180 nm	41 ps	14 ps	25 mW
L. Perktold et al. (2014)[1]	130 nm	5 ps	3 ps	43 mW
P. Keränen et al. (2015) [3]	350 nm	-	5 ps	80 mW
MATRIX (2016)	180 nm	15 ps	4 ps	11.3 mW

- Motivation
- MATRIX TDC Design Overview
- Measurement Results
- Conclusions & Future Work

• Conclusions:

- The new concept was successfully proved.
 - Design, prototype & test.
- Performance:
 - Similar to other proposals. 4 ps RMS time resolution.
 - Outstanding low power consumption. 11.3 mW/channel.
 - Jitter should be improved. 10 ps for M=4, 20 ps for M=16.
 - We should consider the impact of wide bins (>30 ps) for some applications.
- Future Work:
 - MATRIX V2 with improved jitter.
 - Available in early 2017.
 - SoC PET ASIC (HR-FlexToT):
 - Analog signal processing.
 - MATRIX TDC.
 - Power consumption and cost effectiveness.

- 1. L. Perktold and J. Christiansen, "A multichannel time-to-digital converter ASIC with better than 3 ps RMS time resolution"; 2014 *JINST* **9** C01060
- 2. S. Russo et al., "A 41 ps ASIC time-to-digital converter for physics experiments" in *Nuclear Instruments and Methods in Physics Research*, Volume 659, Issue 1, p. 422-427.
- 3. P. Keränen and J. Kostamovaara, "A Wide Range, 4.2 ps(rms) Precision CMOS TDC With Cyclic Interpolators Based on Switched-Frequency Ring Oscillators," in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 62, no. 12, pp. 2795-2805, Dec. 2015.

THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES...

RIMC Layout

- Res. Interp. Mesh Delay Element:
 - Full custom design.
 - Design For Manufacturability (DFM) techniques to minimize systematic process variability:
 - Dummy structures.
 - Symmetric buffer design.
 - 1-D poly with constant pitch.
 - Continuous rectangular diffusions.
 - Dummy resistor.
 - Dummy transistors (DPR, DNR…):
 - More transistors allowed -if necessary-.

Delay Element symbol

RIMC Layout

• Res. Interp. Mesh Column design:

- DEs are abutted to improve DFM.
- DE stages are interleaved to equalize interconnection lengths.
- The matrix building is as easy as concatenate the column N times.

Fig 5: Schematic sample (left), Layout sample (middle) and layout interconnection diagram (right).

RIMC + TCM Layouts

- Front-end Readout Improvements:
 - Track lengths were optimized.
 - TDC channels were stretched.
 - Dedicated horizontal power rails were removed.
 - Track capacitance decreased by factor 3 as a consequence (75 fF \rightarrow 25 fF).

B

Simulation Results:

- Front-End Readout (fine interpolation) transfer function:
 - Phase between timing signal and clock is swept in steps of 1 ps along the
 1.25 ns clock period.
 - For each event, we have:
 - The row(s) number(s) where the transition occurred (*NEW_EVENT<6:0>*).
 - The transition type: rising or falling (*CLK_PHASE<6:0>*).
 - Encoded row data (DOUT0<2:0>, DOUT1<1:0>, ... DOUT6<1:0>).

Simulation Results:

• Front-End Readout (fine interpolation) transfer function:

Front-End Readout (fine interpolation) transfer function output.

MATRIX TDC Detailed Block Diagram

- 2-bit counter features:
 - Maximum parallelism.
 - The worst path is an XOR2.
 - Overflow signal is used to increase the 8-bit counter.

Schematic of the 800 MHz 2-bit counter

- Coarse counter features:
 - 2-level approach: 2-bit counter @ 800 MHz, 8-bit counter @ 200 MHz.
 - Counter values are resynchronized to avoid metastability issues.
 - Synchronous reset from an external signal.

J.Mauricio - UB

Schematic of the 800 MHz 10-bit counter

- Coarse counter channel capture features:
 - ToA signal (*TIME*) is discretized (*timeResynch*) at 800 MHz.
 - Discretized signal (synchronous) captures coarse counter safely.
 - LSB_CHANGE gives information about the phase (Coarse/Fine alignment).

J.Mauricio - UB Schematic of the per-channel Coarse Counter value capture

- Coarse counter. Conclusions:
 - Power consumption: ~3 mW.
 - Reliability problems for supply voltages < 1.7 V at high temperatures.

Coarse counter layout (83 x 70 um²).

MATRIX v1 Picture:

Siub

This is the core of the chip.

The rest are capacitors decoupling capacitors.

J.Mauricio - UB

TDC V1 chip layout. Dimensions: X=2218 um, Y=2221 um.

Code Density Test

<u>Si u</u>B

- How it works?
 - Two uncorrelated pulse generators:
 - One for the CLK reference (50 MHz).
 - The second for uncorrelated timing pulses (12.45 KHz).
 - In theory, all the TDC bins have the same probability to appear.
 - Wider bins indicate linearity issues.

TDC INL Statistics

TDC DNL Statistics

