
TWEPP, SEPT 2016 Nikhil Pratap Ghanathe*

Dr. Herman Lam*

Dr. Alan D George*

Dr. Darin Acosta**

Dr. Ivan Furic**

Alexander Madorsky**

* NSF Center for High-Performance Reconfigurable Computing (CHREC)

** The Institute for High Energy Physics and Astrophysics (IHEPA),

supported by Fermi National Lab

Software and Firmware
Co-development using
High-level Synthesis

CMS L1 Trigger Architecture

2016-09-27 Nikhil Pratap Ghanathe 2

Muon Track-Finder Layer

MPC

CSC DT

LB

RPC

Mezz

Endcap

CuOF

Barrel

Global

Muon Trigger

Global

Trigger

Concentrate

& fan-out

Concentrate

& fan-out

Overlap

ECAL HCAL

HB/HE

HCAL

HF
OSLB

Calo Trigger Layer 1

Calo Trigger Layer 2

Calorimeter Trigger Muon Trigger

EMUTF

SECTOR

PROCESSOR

Trigger primitive conversion into
polar coordinates

Zone image formation

Zone hit extenders

Phi pattern detectors

Best Phi pattern selectors

Patterns to primitives matching

Delta phi and delta theta calculation

Best tracks selector

Pt assignment

Trigger primitives(LCT) from MPCs

P
o

la
r

co
o

rd
in

at
es

d

el
ay

 li
n

e

Best tracks coordinates and Pt

Track

finding

Track

fitting

Sector Processor: Track-finder Algorithm

2016-09-27 Nikhil Pratap Ghanathe 3

Code development
 Current version of code developed by UF team
 Verilog implementation took years

Maintenance
 CMS upgrades hardware/algorithm at regular intervals
 Code & development complexity rapidly increasing

Lack of flexibility, lengthy development time

Verification
 C++ code written manually and painfully made to be consistent

with Verilog
Important for scientists to verify code in C++ (not Verilog)

 C++ code becoming inconsistent with added (Verilog) code
complexity

4

Motivation

2016-09-27 Nikhil Pratap Ghanathe

5

■ Goal :

Explore use of high-level synthesis languages
and tools for next-generation CMS code for
 Parallel development of firmware and C++ model

 Single source code

 CMSSW compatibility (g++ compatibility)

 Increase flexibility in code development

 Decrease in development time

 Consistent high-level (C++) verification

Goals and Challenges

2016-09-27 Nikhil Pratap Ghanathe

6

■ Tool exploration and selection
 Explored OpenCL, Vivado HLS, BlueSpec

■ Rationale for Vivado HLS
 Directives-driven, architecture-aware compiler with best possible QoR

 Mature support for Xilinx

 C/RTL co-simulation

 Easy integration into RTL-based design flow

 Compatibility with g++ compiler

■ Tool Requirements
 Tight latency control and optimal resource usage

 g++ compatibility for future inclusion into CMSSW

 Good C++ code performance

HLS Tool Exploration

2016-09-27 Nikhil Pratap Ghanathe

Vivado HLS Design Flow

Vivado HLS Design Flow

2016-09-27 Nikhil Pratap Ghanathe 7

HLS Productivity

2016-09-27 Nikhil Pratap Ghanathe 8

Challenge: Parallel execution of “for” loop

Optimization: Loop Unrolling

■ Multiple iterations executing in parallel instead of

sequential execution

 Latency improvement

 HLS automatically synchronizes multiple iterations

Productivity: Parallel Execution for
Latency Control

2016-09-27 Nikhil Pratap Ghanathe 9

Challenge: Memory contention (parallel access to LUTs)

Optimization: Array Partitioning

■ Memory contention resolved

 Numerous accesses to LUT at the same instant

 Latency minimized significantly

■ “N” parallel access done in 1 clock cycle instead of N

clock cycles

Productivity: Solving Memory
Contention

2016-09-27 Nikhil Pratap Ghanathe 10

Challenge: Parallel execution and persistence

 Multiple instances of function executing in parallel

 Each instance has to have an array which is persistent

Optimization: Object-oriented Approach

static test inst[5];
#pragma HLS ARRAY_PARTITION variable=inst complete dim=1
//create 5 objects

// unroll loop to have 5 instances running parallely
multiple_inst_label1:for(int i=0;i<5;i++){
#pragma HLS UNROLL

inst[i].test_func(a[i],b[i],index[i],&c[i]);
}

Declare “Array of objects as

Static”
Partition array of objects

completely

Unroll loop for parallel

execution

Productivity: Flexibility- Instantiation
of Multiple Identical modules

2016-09-27 Nikhil Pratap Ghanathe 11

HLS Fine-grained Control

2016-09-27 Nikhil Pratap Ghanathe 12

Challenge: Emulate “always” block

 Use while(1) loop to emulate

 HLS infers no fanin/fanout

Optimization

 Use While(en==1) loop

 HLS ignorant of value of “en” signal

■ Manipulate HLS into synthesizing an

“always” block

 Demonstrates the amount of control user has on

synthesized design

Control: Emulation of “always”
Block

2016-09-27 Nikhil Pratap Ghanathe 13

Challenge: Undesired FSM extracted for purely
combinational design

 HLS establishes false dependencies; hence latency=3 clock cycles

■ Control how HLS treats a set of operations

 Control RTL level constructs from HLS level

 Latency minimized from 3 clock cycles to 0 clock cycles

Array_reshape

Control: Latency Control

2016-09-27 Nikhil Pratap Ghanathe 14

Optimization: Array Reshaping
 HLS treats all operations as one and latency =0 clock cycles

#pragma HLS ARRAY_RESHAPE variable=ph_zone complete dim=0

Challenge: Save 1 clock cycle from Sorter module

Optimization: Inline &Latency Directive, Code structure manipulation

 HLS tries to fit everything into 1 clock cycle

sort(a,winner0,&winid[0],ret_a);
sort(ret_a,winner1,&winid[1],ret_a1);
sort(ret_a1,winner2,&winid[2],ret_a2);

Challenge: Critical path delay > Clock period

Optimization: Explicit Pipelining

sort(a,winner0,&winid[0],ret_a); // INLINE OFF
sort_1(ret_a,winner1,&winid[1],ret_a1); // INLINE
sort_1(ret_a1,winner2,&winid[2],ret_a2); // INLINE

Create new version of sorter

function -“SORT_1”

EXTRA register

inserted for first

sorter

HLS optimizes code

as it pleases when

function is INLINED

SOLUTION: DON’T

ALLOW HLS to

optimize first sorter

INLINE

“SORT_1”

DO NOT INLINE

“SORT”

Control: Scheduling of Functions

2016-09-27 Nikhil Pratap Ghanathe 15

Challenge: HLS optimizes shift register

Optimization: Code Structure

DFF DFF
INPUT

OUTPUT [0]

OUTPUT [1]

OUTPUT [2]DFF DFF DFF

void test (ap_uint <4> in, ap_uint<4> out[3]) {

volatile ap_uint<4> temp[5];

temp[4]=in;
test_label8: for(i=4;i>0;i--){
#pragma HLS unroll
temp[i-1] = temp[i];
}
out[2]=temp[0];
out[1]=temp[1];
out[0]=temp[2];
}

Explicitly create shift register

Define as VOLATILE to avoid

optimizations

Assign outputs

2016-09-27 Nikhil Pratap Ghanathe

Control: Synthesizing a Shift Register

16

Resource Usage Statistics

Note:

Prelimin

ary data

Module Name HLS (% of LUTs) Verilog (% of LUTs)

Primitive Converter 12% 6%

Zone Image Formation 1% 1%

Zone hit Extender 1% 1%

Phi-Pattern Detector 11% 16%

Sorter 3% 3%

Co-ordinate Delay 0

(uses 1%FFs)

2%

Patterns to primitive

matching
10% 16%

Delta phi and theta

calculation
2% 2%

HLS resource Usage <= Verilog Resource Usage

2016-09-27 Nikhil Pratap Ghanathe 17

 Arbitrary precision data-types a challenge
 C-based arbitrary precision data-types not supported by

standard C compilers (gcc)

 Does not reflect bit-accurate behaviour of the code

 Vivado HLS uses own-built ‘apcc’ compiler for C-designs

■ Goal: Automation

Compile HLS code in C++ using ‘g++’ compiler

Compatibility in CMSSW Environment

2016-09-27 Nikhil Pratap Ghanathe 18

 Solution: C++ based design

 C++ uses arbitrary precision data-types defined in
SystemC standard

Performance Benchmarking

 Primitive Converter module benchmarked on CMSSW
 HLS (for functional simulation) slower by factor of 2 relative to

manually-written C++ code

 Tolerable factor, hence a good result (preliminary result)

*CMSSW - (CMS-Software)

5.83608e
-08

seconds

1.19759e
-07

seconds

Manually-written C++ HLS code

2016-09-27 Nikhil Pratap Ghanathe 19

Progress:
■ Translated and verified all modules of the

EMUTF using HLS

■ Successfully tested “Primitive Converter”

and “Zone image formation module” on

Virtex-7 FPGA for 1000 track stubs

■ Hardware output of HLS generated code

matches output of baseline Verilog impl.

Conclusions:
 Performance and latency constraints met for all modules

 Sorter module re-worked to save 1 clock cycle of CSC
Track-finder

 Resource usage comparable
 Observed to be better than Verilog impl. for majority of cases

 Compatibility in CMSSW environment for verification in C++
 Lessons learned

 HLS optimization techniques documented for future use

Summary and Conclusions

2016-09-27 Nikhil Pratap Ghanathe 20

THANK YOU

Questions?

2016-09-27 Nikhil Pratap Ghanathe 21

