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CMS L1 Trigger Architecture
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Code development
 Current version of code developed by UF team
 Verilog implementation took years

Maintenance
 CMS upgrades hardware/algorithm at regular intervals
 Code & development complexity rapidly increasing

Lack of flexibility, lengthy development time

Verification
 C++ code written manually and painfully made to be consistent 

with Verilog
Important for scientists to verify code in C++ (not Verilog)

 C++ code becoming inconsistent with added (Verilog) code 
complexity
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Motivation
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■ Goal : 

Explore use of high-level synthesis languages 
and tools for next-generation CMS code for
 Parallel development of firmware and C++ model

 Single source code 

 CMSSW compatibility (g++ compatibility)

 Increase flexibility in code development

 Decrease in development time 

 Consistent high-level (C++) verification

Goals and Challenges
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■ Tool exploration and selection
 Explored OpenCL, Vivado HLS, BlueSpec

■ Rationale for Vivado HLS 
 Directives-driven, architecture-aware compiler with best possible QoR

 Mature support for Xilinx

 C/RTL co-simulation 

 Easy integration into RTL-based  design flow

 Compatibility with g++ compiler

■ Tool Requirements
 Tight latency control and optimal resource usage

 g++ compatibility for future inclusion into CMSSW

 Good C++ code performance

HLS Tool Exploration
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Vivado HLS Design Flow

Vivado HLS Design Flow
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HLS Productivity
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Challenge: Parallel execution of  “for” loop

Optimization: Loop Unrolling

■ Multiple iterations executing in parallel instead of 

sequential execution

 Latency improvement

 HLS automatically synchronizes multiple iterations

Productivity: Parallel Execution for 
Latency Control
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Challenge: Memory contention (parallel access to LUTs)

Optimization: Array Partitioning

■ Memory contention resolved

 Numerous accesses to LUT at the same instant

 Latency minimized significantly

■ “N” parallel access done in 1 clock cycle instead of N                       

clock cycles

Productivity: Solving Memory 
Contention
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Challenge: Parallel execution and persistence

 Multiple instances of function executing in parallel

 Each instance has to have an array which is persistent

Optimization: Object-oriented Approach

static test inst[5];
#pragma HLS ARRAY_PARTITION variable=inst complete dim=1
//create 5 objects

// unroll loop to have 5 instances running parallely
multiple_inst_label1:for(int i=0;i<5;i++){
#pragma HLS UNROLL

inst[i].test_func(a[i],b[i],index[i],&c[i]);
}

Declare “Array of objects as 

Static”
Partition array of objects 

completely

Unroll loop for parallel 

execution

Productivity: Flexibility- Instantiation 
of Multiple Identical modules
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HLS Fine-grained Control
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Challenge: Emulate “always” block

 Use while(1) loop to emulate

 HLS infers no fanin/fanout

Optimization

 Use While(en==1) loop

 HLS ignorant of value of “en” signal

■ Manipulate HLS into synthesizing an 

“always” block

 Demonstrates the amount of control user has on 

synthesized design

Control: Emulation of “always” 
Block
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Challenge: Undesired FSM extracted for purely 
combinational design

 HLS establishes false dependencies; hence latency=3 clock cycles

■ Control how HLS treats a set of operations

 Control RTL level constructs from HLS level

 Latency minimized from 3 clock cycles to 0 clock cycles

Array_reshape

Control: Latency Control
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Optimization: Array Reshaping
 HLS treats all operations as one and latency =0 clock cycles

#pragma HLS ARRAY_RESHAPE variable=ph_zone complete dim=0



Challenge: Save 1 clock cycle from Sorter module

Optimization: Inline &Latency Directive, Code structure manipulation

 HLS tries to fit everything into 1 clock cycle

sort( a,winner0,&winid[0],ret_a);
sort( ret_a,winner1,&winid[1],ret_a1);
sort( ret_a1,winner2,&winid[2],ret_a2);

Challenge: Critical  path delay > Clock period

Optimization: Explicit Pipelining

sort( a,winner0,&winid[0],ret_a);   // INLINE OFF
sort_1( ret_a,winner1,&winid[1],ret_a1); // INLINE 
sort_1( ret_a1,winner2,&winid[2],ret_a2); // INLINE

Create new version of sorter 

function -“SORT_1” 

EXTRA register 

inserted for first 

sorter

HLS optimizes code 

as it pleases when 

function is INLINED

SOLUTION: DON’T 

ALLOW HLS to 

optimize first sorter

INLINE 

“SORT_1”

DO NOT INLINE 

“SORT”

Control: Scheduling of Functions 
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Challenge: HLS optimizes shift register

Optimization: Code Structure

DFF DFF
INPUT

OUTPUT [0]

OUTPUT [1]

OUTPUT [2]DFF DFF DFF

void test ( ap_uint <4> in, ap_uint<4> out[3]) {

volatile ap_uint<4> temp[5];

temp[4]=in;
test_label8: for(i=4;i>0;i--){
#pragma HLS unroll
temp[i-1] = temp[i];
}
out[2]=temp[0];
out[1]=temp[1];
out[0]=temp[2];
}

Explicitly create shift register

Define as VOLATILE to avoid 

optimizations

Assign outputs
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Control: Synthesizing a Shift Register
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Resource Usage Statistics

Note: 

Prelimin

ary data

Module Name HLS (% of LUTs) Verilog (% of LUTs)

Primitive Converter 12% 6%

Zone Image Formation 1% 1%

Zone hit Extender 1% 1%

Phi-Pattern Detector 11% 16%

Sorter 3% 3%

Co-ordinate Delay 0

(uses 1%FFs)

2%

Patterns to primitive

matching
10% 16%

Delta phi and theta 

calculation
2% 2%

HLS resource Usage <= Verilog Resource Usage
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 Arbitrary precision data-types a challenge
 C-based arbitrary precision data-types not supported by   

standard  C compilers (gcc)

 Does not reflect bit-accurate behaviour of the code

 Vivado HLS uses own-built ‘apcc’ compiler for C-designs

■ Goal: Automation

Compile HLS code in C++ using ‘g++’ compiler

Compatibility in CMSSW Environment
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 Solution: C++ based design

 C++ uses arbitrary precision data-types defined in 
SystemC standard



Performance Benchmarking

 Primitive Converter module benchmarked on CMSSW
 HLS (for functional simulation) slower by factor of 2 relative to

manually-written C++ code

 Tolerable factor, hence a good result (preliminary result)

*CMSSW - (CMS-Software)

5.83608e
-08

seconds

1.19759e
-07

seconds

Manually-written C++ HLS code
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Progress:
■ Translated and verified all modules of the 

EMUTF using HLS

■ Successfully tested “Primitive Converter” 

and “Zone image formation module” on 

Virtex-7 FPGA for 1000 track stubs

■ Hardware output of HLS generated code 

matches output of baseline Verilog impl.

Conclusions:
 Performance and latency constraints met for all modules

 Sorter module re-worked to save 1 clock cycle of CSC    
Track-finder

 Resource usage comparable
 Observed to be better than Verilog impl. for majority of cases

 Compatibility in CMSSW environment for verification in C++
 Lessons learned

 HLS optimization techniques documented for future use

Summary and Conclusions
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THANK YOU

Questions?
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