
Using MaxCompiler for High Level
Synthesis of Trigger Algorithms

TWEPP 2016
Sioni Summers

27/09/16 Sioni Summers 2

Contents

● What is MaxCompiler?
– How could it be useful in triggering?

● Case study: CMS Level 1 Calorimeter Trigger
– Benchmarking VHDL vs MaxJ

● Case study: CMS Level 1 Track Trigger
– Developing new algorithms

27/09/16 Sioni Summers 3

What is MaxCompiler?

● A compiler to execute Java (MaxJ) and generate
output synthesisable to FPGAs

● MaxJ is at a higher level of abstraction than HDL
● Simulate or run hardware seamlessly with CPU

applications
● Normally targetting Maxeler hardware

– Permitted to obtain the VHDL for this work, and use with
the MP7 board

– May become widely available, e.g. through OpenSPL

27/09/16 Sioni Summers 4

Why MaxCompiler?

● Higher level of abstraction than VHDL/Verilog
could yield:
– More physicists able to develop firmware
– Better code maintainability
– Shorter development times

● For CMS:
– High granularity calorimeter
– Track Trigger

27/09/16 Sioni Summers 5

Tool flow

● Write Java (MaxJ)

● Run Java
– Produce VHDL,

Coregen (Xilinx)
– Produces .max file

● Simulate / Synthesise

public myKernel extends Kernel(){
 DFEVar x = io.input(“xi”, dfeInt(32));
 // Do things with x
 io.output(“xo”, x, dfeInt(32));
}

MyKernel.vhd:
Synthesis/Modelsim

MyKernel.max:
 Proprietary Sim.

myResult = myDesign(myData);

27/09/16 Sioni Summers 6

MaxCompiler Features

● Pipelining (mostly)
taken care of
– Scheduling
– Tool delays signals to

accommodate latency
of neighbouring paths

● Design graphs
– Useful visualisation
– Linked to source code

DFEVar x = io.input(“x”, dfeInt(16));
DFEVar y = io.input(“y”, dfeInt(16));
DFEVar result = (x + 1) * y;
io.output(“result”, result, dfeInt(16));

27/09/16 Sioni Summers 7

MaxCompiler Features

● Easy handling of numerics and bit-growth
DFEVar x = io.input('x', dfeFixMax(9, 3, SignMode.UNSIGNED)); // Fixed point
DFEVar y = io.input('y', dfeFixMax(9, 3, SignMode.UNSIGNED)); // Fixed point
optimization.pushEnableBitGrowth(true); // allow output to have more bits
DFEVar z0 = x + y;
DFEVar z1 = x * y;
optimization.pushFixOpMode(...);
DFEVar z2 = x * y;

● Choose strategies for selecting the output type
– e.g. truncation/rounding, number of bits, fixed point

location (avoid underflow, overflow or user defined)

27/09/16 Sioni Summers 8

Achieving low latency

● Default behaviour is to
pipeline after every op.

● Desirable for high
throughput, but can yield
higher latency

● Programmer can instead
remove registers where
desired

● Use source annotations to
evaluate

● Tool reports total latency
and longest path

optimization.pushPipeliningFactor(0);
// Do operations with no pipelining
optimization.pipeline(var);
// Manually register var
optimization.popPipeliningFactor();
// Return to default

Col 1 - Longest path through line.
Col 2 - Sum of all node output latencies for
line.

5 | 5 | DFEVar x = io.input("x", dfeInt(16));
5 | 5 | DFEVar y = io.input("y", dfeInt(16));
4 | 4 | DFEVar result = (x + 1) * y;

27/09/16 Sioni Summers 9

CMS Level 1 Calorimeter Trigger

● 'Benchmarking' MaxCompiler
● Existing energy sum and jet algorithms re-

implemented with MaxJ
– Using alternative design patterns where appropriate

● Compare with original handwritten VHDL
– Resources
– Latency
– Lines of code
– Output equivalence

27/09/16 Sioni Summers 10

CMS Level 1 Calorimeter Trigger

● Time Multiplexed Trigger
● Main Processor (MP)

receives one ring (72
trigger towers) from each
half per clock cycle

● Determine total event
energy
– Scalar & Vector

● Find objects: jets, e/γ, τ
– With pileup subtraction

MP7

Jets
x 12

Trigger Towers

One ring

EΣ
T

EΣ
x

EΣ
y

27/09/16 Sioni Summers 11

Jet Algorithm

● 'Sliding window'
● Sum the energy in a fixed

sized grid
● Subtract local pileup

estimate
● Jet centre is tower with

highest energy in window
● Output 12 highest energy

jets

Veto if:
> central tower
≥ central tower

Energy is:
Sum of towers
Subtract median
surrounding
strips

27/09/16 Sioni Summers 12

Energy Sums: efficient computation

● Sliding window looking →
across inputs and long
pipeline

● Neighbouring candidate
towers can share sums

● Write 'memory intensive' code
● Reuse (or fanout) of a

computation must be written
explicitly

● In this sense MaxJ is close to a
HDL

Do:
sum3x1[i] = tower[i-1] +

tower[i] +
tower[i+1];

sum9x1[i] = sum3x1[i-3] +
sum3x1[i] +
sum3x1[i+3];

Not:
sum9x1[i] = tower[i-4] +

tower[i-3] +
…
tower[i+3] +
tower[i+4];

Version 2 uses 10x resources

27/09/16 Sioni Summers 13

Design Equivalence – E
T
 Sums

● E
T
 sums in 'trigger units' of

bits at output
● Output shows exact match

between VHDL and MaxJ
implementations

27/09/16 Sioni Summers 14

Design Equivalence - Jets

● Comparisons of jet output: p
T
and η, ϕ

position, in 'trigger units'
● p

T
 and η are identical

● discrepancy: jets of the same pϕ
T
 and η

can be ordered diferently after sort in ϕ
● Source code for sort is very diferent

between implementations!

27/09/16 Sioni Summers 15

Comparison

● 7% more LUT slices than
the handwritten VHDL
– All MaxCompiler cores

have logic for
asynchronous running

● DSP usage identical
● Half the lines of code

– Suggests better
maintainability

Item Number
(VHDL)

Number
(MaxJ)

LUT Slices 95235 102508

Slice Regs. 153198 130072

DSPs 288 288

BRAM tiles 0 0

Lines of
Code

3,000 1,500

● Built for a Virtex-7 690t using Vivado
2015.4, with MP7 core infrastructure

27/09/16 Sioni Summers 16

Case Study II: CMS Level 1 Track
Trigger
● At the High-Lumi LHC CMS will use tracking at Level 1 to

cope with 140 pp interactions per bunch crossing
● 'pT module' will only read-out stubs above a threshold

– 2 to 3 GeV under investigation

● Track trigger will reconstruct stubs to tracks in 10μs

High p
T
 pass→ Low p

T
 fail→ ~mm

27/09/16 Sioni Summers 17

Time Multiplexed Track Trigger –
Hough Transform (HT)
● Tracks above pT threshold are

approximately straight in r- ϕ
plane
– = (q/pϕ T)r + ϕ0

● Bins are in (q/pT) and ϕ0

● Use stub bend to limit q/pT range

● Do not use the z information
– Keeps the histogram 2D
– Leads to extra fakes

● Use the bin parameters as an
estimate of trajectory for fit

q/p
T

ϕ
0

Hough Transform Example
y = mx + c

27/09/16 Sioni Summers 19

Time Multiplexed Track Trigger –
CERN demonstrator

● Each box uses one MP7
● MaxCompiler used in GP

(Geometric Processor) and TF
(Track Fit) code

● GP and HT exist in hardware, 'DS'
(downstream) under development

27/09/16 Sioni Summers 20

Kalman Filter

● Fit candidates found by the HT
– Improve q/pT, ϕ0 resolution, obtain

vertex, pseudo-rapidity
● Propagate track parameters inside-

out
● Use stubs to update track

parameters
● Ignore hits with high residuals
● Split multiple stubs into

independent candidates
– Improves resolution & purity
– r- only tracking adds incorrect hits to ϕ

tracks

r

 or zϕ

Propagate

Update

27/09/16 Sioni Summers 21

Kalman Filter - equations

χ2x
k-1

C
k-1

m
k

C
k

K
k

x
k

H
k

V
k

χ2

(R
k
)-1

● k-1, k: previous layer, current layer
● x: track helix parameters
● C: their covariance matrix
● m: a measurement (stub)
● F: forecast matrix
● H: measurement matrix
● K: the Kalman gain

27/09/16 Sioni Summers 22

Kalman Filter in MaxJ

● Utilises the numerical
manipulation features
– Easy truncation
– Fixed point arithmetic

● Allow scheduler to
parallelise matrix
maths
– Optimise constant ops.

Item Number (%)*

DSPs 44 (1.08)

BRAM Tiles 1 (0.07)

LUT Slices 3302 (0.76)

FF Slices 4131 (0.48)

Clock Cycles 40

● Resource usage for one
isntance of a 4 parameter state
updater

● Chain together for a full fit
● 6 for L1 track trigger

* Percentage of a Virtex-7 690t

27/09/16 Sioni Summers 23

Conclusion

● MaxCompiler is a high level synthesis tool for
designing complex FPGA firmware

● Results show minimal overhead in resource
usage compared to VHDL implementation
– CMS Calorimeter Trigger Study

● MaxCompiler in use for development of new
firmware for a CMS Track Trigger demonstrator
– Utilising numerical manipulation features

27/09/16 Sioni Summers 24

References
● The CMS Collaboration (S. Chatrchyan et al.), The CMS experiment at the CERN LHC, 2008

JINST 3 S08004, DOI: 10.1088/1748-0221/3/08/S08004

● Maxeler Technologies, MaxCompiler white paper, url:
https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf

● Kreis, B. et al, Run 2 Upgrades to the CMS Level-1 Calorimeter Trigger, Journal of
Instrumentation, 11 (2016), url:http://stacks.iop.org/1748-0221/11/i=01/a=C01051

● G. Apollinari, I. Bejar Alonso, O. Bruning, M. Lamont, L. Rossi High Luminosity Large Hadron
Collider (HL-LHC) : Preliminary Design Report, CERN, Geneva, 2015, DOI: 10.5170/CERN-2015-
005

● Cieri, D. et al, L1 track finding for a time multiplexed trigger, Nuclear Instruments and Methods
in Physics Research A 824 (2016) 268–269
DOI:http://dx.doi.org/10.1016/j.nima.2015.09.117

https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
http://stacks.iop.org/1748-0221/11/i=01/a=C01051

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

