TOTAL IONIZING DOSE EFFECTS ON A 28NM HI-K METAL-GATE CMOS TECHNOLOGY UP TO 1 GRAD

S. Mattiazzo¹, M. Bagatin¹, A. Baschirotto^{2,3}, D. Bisello^{4,5}, S. Gerardin^{1,5}, A. Marchioro⁶, A. Paccagnella^{1,5}, D. Pantano^{4,5}, A. Pezzotta^{2,3,7}, C.-M. Zhang⁷

¹Dipartimento di Ingegneria dell'Informazione, Università di Padova, Italy

- ² Dipartimento di Fisica, Università di Milano Bicocca, Milano, Italy
- ³ INFN Sezione di Milano, Italy
- ⁴ Dipartimento di Fisica e Astronomia, Università di Padova, Italy
- ⁵ INFN Sezione di Padova, Italy
- ⁶ CERN, Switzerland
- ⁷ ICLAB, École Polytechnique Fédérale de Lausanne, Switzerland

OUTLINE

- Motivations for 28nm
- Test structure and test setup description
- TID irradiation for nMOSFETs
- TID irradiation for pMOSFETs
- Conclusions

THE GOAL

• The talk will discuss the results of a Total Irradiation Dose (TID) test on a 28nm High-k CMOS technology for applications in instrumentation electronics for particle physics

Why 28nm?

MOTIVATIONS

- Future High Energy Physics Experiments read-out will have to face two key problems
 - Extremely large radiation total-dose (Up to 1Grad in 10 years for HL-LHC)
 - Much larger than in any previous situation
 - Present (250nm, 130nm) or under-development (65nm) electronics could fail
 - Extremely large number of channels (Increasing power consumption)
- New electronics to be designed
 - rad-hard performance
 - low-power consumption

• Open question: which is the best tech-node for future implementations in terms of

- Radiation hardness to 1Grad
- Low-power consumption
- Technology access (availability, cost, etc..)

NEW TECHNOLOGIES

• New technologies offer options in terms of

- Minimum gate size (65nm, 45nm, 32nm, 28nm, or below)
- Technology features (CMOS-bulk, CMOS-FinFET, CMOS-SOI, etc)
- Technology access and cost (not only for prototyping but also for the final production)
- There is a general trend to move ASICs to scaled technologies
 - Higher digital circuits density to include more digital funtionalities
 - Higher speed to achieve improved performance in terms of larger bandwith
 - Lower power consumption
- The cost of 65nm, 45nm, 28nm will become comparable
 - The cost is not anymore a selection reason.
 - The technology can then be chosen in term of performance quality

HIGH-K GATE DIELECTRICS

Year of Production	2004	2005	2006	2007	2010
DRAM ½ Pitch	90 nm	80 nm	70 nm	65 nm	45 nm
Physical Gate Length MPU/ASIC (nm)	37	32	28	25	18
Equivalent physical oxide thickness for MPU/ASIC Tox (nm)	0.9-1.4	0.8-1.3	0.7-1.2	0.6-1.1	0.5-0.8
Gate dielectric leakage at 100°C (mA/µm) High-performance	0.1	0.3	0.7	1.0	3.0
Equivalent physical oxide thickness for low standby power Tox (nm)	1.8-2.2	1.6-2.0	1.4-1.8	1.2-1.6	0.9-1.3
Gate Dielectric Leakage (pA/µm) LSTP	1.0	1.0	1.0	1.0	3.0
Thickness control EOT (% 3s)	<± 4	<± 4	<± 4	<± 4	<± 4

- As devices approach the sub-45 nm scale, the effective oxide thickness (EOT) of the traditional silicon dioxide dielectrics are required to be smaller than 1 nm (about 3 monolayers and close to the physical limit) \rightarrow high gate leakage currents due to the quantum tunneling effect at this scale.
- To continue the downward scaling, dielectrics with a higher dielectric constant (highk) are being suggested as a solution to achieve the same transistor performance while maintaining a relatively thick physical thickness

Scaltech28 project

- Scaltech28 collaboration: INFN (Milano-Bicocca, Pavia, Padova) + CERN + EPFL-Neuchatel; started in 2014
- Goal: to investigate a 28nm high-k commercial bulk CMOS technology for pixel readout circuits for HL-LHC
- Analog front-end (see F. Resta's talk on Tuesday 27th at this workshop), mixed analog digital circuits, radiation damage analysis and modeling
- Spring 2015: first tapeout submission including some test structures for TID tests
- Chips of the 1st submission delivered in October 2015

TEST STRUCTURE DESCRIPTION

W	L	
3u	1u	
3u	30n	
100n	1u	
1u	30n	
1u	60n	
1u	90n	
400n	1u	
200n	1u	
300n	30n	
100n	30n	

- Replicated for nMOSFET and pMOSFET
- Standard V_{th} and High V_{th}
- Only linear layout

IRRADIATION AND TEST SETUP DESCRIPTION

- Irradiation at the X-ray facility in Padova (Italy)
- Irradiations at room temperature
- Setup modified to increase the dose rate up to 8Mrad/h (5 days only for irradiation)
- Chip on a semi-automatic probe station
- Contacted with a probe card with 32 probes
- Switching matrix connecting to the Semiconductor Parameter Analyzer and bias

NMOSFET IRRADIATIONS

- Irradiations performed at Room Temperature
- Dose rate: 8.3 Mrad/h
- nMOSFET Standard V_{th}
- Bias during irradiation: $V_{gs} = V_{ds} = 1.1V$
- Extracted parameters: I_{off} , I_{on} , V_{th} , g_m , Subthreshold Slope
- No annealing

W	\mathbf{L}	
3u	1u	
3u	30n	W/L max
100n	1u	W/L min
1u	30n	
1u	60n	
1u	90n	
400n	1u	
200n	1u	
300n	30n	
100n	30n	

NMOSFET I_{DS} - V_{GS}

NMOSFET $V_{\rm TH}$ variation

• Threshold voltage variation limited to few tens of mV (-12% in the worst case), within variability

NMOSFET I_{ON} variation

NMOSFET \mathbf{I}_{LEAK}

NMOSFET $I_{\rm LEAK}$ variation

l₀ff[A] 3um/1um 3um/30n 100nm/1um 1um/30nm 10⁻⁹ 1um/60nm 400nm/1um Leakage current 200nm/1um 300nm/30nm increases between 10⁻¹⁰ 100nm/30nm 2 and 3 orders of magnitude 10⁻¹¹ 10⁻¹² 1000 TID[Mrad] 200 800 0 400 600

NMOS I_{off}

S. Mattiazzo TWEPP 2016

PMOSFET IRRADIATIONS

- Irradiations performed at Room Temperature
- Dose rate: 8.3 Mrad/h
- pMOSFET Standard V_{th}
- Bias during irradiation: V_{gs}=V_{ds}=-1.1V
- $\bullet~$ Extracted parameters: $I_{off},~I_{on},~V_{th},~$ Subthreshold Slope
- No annealing

W	L	
3u	1u	
3u	30n	W/L max
100n	1u	W/L min
1u	30n	
1u	60n	
1u	90n	
400n	1u	
200n	1u	
300n	30n	
100n	30n	

PMOSFET I_{LEAK}

• No increase in leakage current (pMOSFETs are not subject to sidewall leakage current)

PMOSFET I_{DS} - V_{GS}

PMOSFET $I_{\rm ON}$ variation

PMOS ΔI_{on} 001 [%] 09 90 3um/1um 3um/30n TID [Mrad]

PMOSFET $I_{\rm ON}$ variation

PMOS ΔI_{on}

$PMOSFET \ I_{ON} VARIATION$

PMOS ΔI_{on}

PMOSFET I_{on} variation

PMOS ΔI_{on}

RINCE (1)

• Radiation Induced Narrow Channel Effect is related to charge trapping in the STI oxides

pMOSFET

nMOSFET

 $\text{NMOS}\ \Delta \text{I}_{\text{on}}$

RINCE (2)

W=min size

W=moderate size

F. Faccio's talk at TWEPP 2015

S. Mattiazzo TWEPP 2016

PMOS ΔV_{thr}

For wider devices, the 0 variation is < 50 mV

PMOSFET V_{TH}

3um/1um

3um/30n

200nm/1um 300nm/30nm

TRANSCONDUCTANCE

Ο

[%]_00 ∆g_[%] \mathbf{g}_{m} decrease is 50% for the 3um/1um 3um/30n transistor narrowest - 100nm/1um (mobility degradation) 1um/30nm - 1um/60nm 90 - 1um/90nm 400nm/1um 200nm/1um 300nm/30nm 80 - 100nm/30nm 70 60 50 1000 TID[Mrad] 400 600 800 200 0

PMOS ∆max g_m

CONCLUSIONS

- No unexpected behavior due to the use of high-k oxides
- nMOSFET transistors have a limited damage due to TID (significant increase of leakage current)
- \circ pMOSFET are much more affected by TID due to charce trapping in the STI oxides (dramatic loss of I_{on})
- No possibility to irradiate at low Temperature
- No Enclosed Layout Transistors

BACKUP

NMOSFET SUBTHRESHOLD SLOPE

• Moderate ss variation (except for the minimum W/L transistor)

S. Mattiazzo TWEPP 2016

NMOSFET: TRANSCONDUCTANCE

NMOSFET: TRANSCONDUCTANCE LOSS

PMOSFET SUBTHRESHOLD SLOPE

• No significant change in ss (for W/L minimum, ss extraction is difficult for TID > 500 Mrad): limited contribution coming from Q_{it}

PMOS ∆ss

PMOSFET TRANSCONDUCTANCE

PMOSFET TRANSCONDUCTANCE

