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Introduction: CMS HCAL
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HCAL = hadron calorimeter
• 17 layers of brass absorber and scintillator  

tiles in barrel (HB) and endcap (HE) sections 
• Wavelength-shifting fibers transport  

scintillation light 
• Currently using  

Hybrid Photo Diodes  
(HPD) to collect light  
from scintillator 

• QIE8 ASIC to integrate and 
digitize signal from HPDs 

• Limited depth  
segmentation 
(1 — 3 depths)
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Motivation for upgrade
• Higher than expected radiation damage to scintillator 

tiles resulting in increased signal loss 
• Radiation damage “dose rate model” 

• signal loss depends  
exponentially on  
accumulated dose,  
with decay constant D  
depending on dose rate:  
 ~exp(-dose/D[Mrad]) 

• Less damage for higher  
dose rate 

• Caused by chemical effects  
related to oxygen diffusion
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Motivation for upgrade
• Effect of radiation damage can be 

mitigated by replacing HPDs with 
Silicon PhotoMultipliers (SiPMs):  
• 3x photon detection efficiency 

(PDE) → increase signal size 
• Much smaller → more channels 
→ finer depth segmentation  
→ more precise calibration to 
handle depth-dependent 
radiation damage 

• Recovers performance for 
physics quantities such as 
ETmiss and jet energy resolution 
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Overview of upgraded system
• First large installation of SiPMs in a radiation environment 

(1x1012 1MeV neutrons/cm2) 
• Upgraded HE frontend (~7k channels) to be installed early 

2017, upgraded HB frontend (~9.2k channels) to be 
installed during LHC LS2 (2019) 
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Frontend overview
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Readout box schematic

RM: readout module 
CU: calibration unit with LED 
CCM: clock, control & monitoring

Readout module schematic

HE RM



SiPMs
• Produced by Hamamatsu 
• 4500 pixels/mm2, each pixel is 

operated in Geiger mode, signal 
is sum of all fired pixels 

• 2 sizes: 2.8 mm and 3.3 mm 
diameter to handle varying 
number of layers that are added 
together 

• Fast recovery time of 10 ns  
→ effective pixel count increases 
by factor of ~3 

• 8 SiPMs in one package 
• Increase in dark current after 

irradiation is well-understood and  
at manageable level
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SiPMs
Advantages compared to HPDs: 

• Smaller size 
• Operate at much lower voltage (~70V vs ~8000V) and have no 

magnetic field sensitivity  
→ avoid high-energy anomalous noise present with HPDs 

• Better photon detection efficiency, ~30% 
• Very high gain, factor 150-200 larger than HPDs, depending on 

operating point
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SiPM control electronics
Goal: achieve SiPM gain stability and accuracy to within 1%
Infrastructure needed: 

1. Precise bias voltage control 
2. Precise temperature control (~2%/℃ gain sensitivity)
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Bias voltage (BV) control
• Generate bulk BV 

from backplane 
power 

• Step down to 
operational voltage 
for each SiPM 
individually

Peltier cooling
• run SiPMs at 5℃ 
• online control loop via slow 

controls to monitor and adjust 
• temperature sensor next to 

SiPMs 
• 12-bit DAC resulting in 0.01℃ 

control precision



SiPM control electronics
BV converter board

• mounted on control board 
• custom boost converter:  

9.5V on backplane → O(100V) 
Control board:

• bulk BV stepped down to ~70V 
• separately per channel 
• 20 mV LSB (1% precision on gain for 

V-Vb = 3V) 
• 3—7 mV ripple/noise 

• 1 control board per RM (i.e. 48 SiPM 
channels) 

• measures SiPM leakage current 
• measures temperature and humidity
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SiPM control electronics
Quality control of all produced cards
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• Checked response of all 
BV channels to the set 
DAC value 

• Very uniform out of the 
box: RMS of 0.3% 

• Small variations will be 
further leveled to 
achieve uniform SiPM 
gain across all channels



SiPM mounting board
• Rigid-flex construction 

• Rigid part holds the SiPMs inside 
cooling assembly 

• Flex cables interface with QIE chips 
for charge integration  

• Flex cable to transfer BV to each SiPM 
• Temperature and humidity sensors 

installed next to SiPMs 
• Worked with vendor 

• Optimize fabrication process 
• Design adjusted to allow more  

reliable production
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QIE cards
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ProASIC3L FPGA 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data serialization 

and encoding
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QIE11 ASIC
• Integrate charge in 25ns intervals without dead time
• 17-bit dynamic range with 8-bit readout, previous generation 

(QIE8) had 14-bit dynamic range with 7-bit readout. 
• Extended dynamic range (350 pC with 3 fC LSB) with extra 

bit of precision to match the larger SiPM gain 
• Achieves ~1% resolution over full  

dynamic range by using 4 integration  
ranges (scaled by factors of 8) with a  
6-bit pseudo-logarithmic ADC in each  
range 

• Programmable current shunt (between  
1 and 1/11.5) for tuning SiPM gain  
independently of SiPM PDE
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QIE11 testing
• O(40k) chips have been thoroughly tested before 

mounting on QIE cards 
• Custom test setup 

• Robot system for  
moving QIE chips  
onto test board 

• Can load 1120 chips  
per cycle 

• Test suite covers all  
aspects of the chips,  
and takes about  
2.5 minutes per chip. 

16



QIE11 testing
• Very good acceptance: 

• 98% for basic functionality 
• 86% for final selection, including uniformity selections
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• All cards went through quality 
control (94% yield) 

• Each QIE on each card has 
been calibrated for all shunt 
values using a custom charge 
injector board
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Testbeam
• Preproduction system was tested at the CERN H2 beamline (muon 

and pion beam) 
• Shows excellent performance of SiPMs vs HPDs in terms of signal 

to noise ratio 
• 4% RMS on SPE charge using uniform bias voltage setting, at 

constant over-voltage this becomes 1%
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Summary

• CMS HCAL will upgrade the frontend with SiPMs 
and associated readout and control electronics 

• Upgrade for endcap HCAL is planned for early 
2017 and final testing and burn-in of the new 
system is well underway 

• Upgrade of barrel HCAL will be done during LS2
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