

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

ProtoPRM: An FPGA-Based High Performance Pattern Recognition Memory Track Finder Mezzanine

J. Olsen¹, T. Liu¹, J. Wu¹, Z. Hu¹, Z. Xu²

¹ Fermi National Accelerator Laboratory, Batavia, Illinois U.S.A. ² Peking University, Beijing, CHINA

29 September 2016

Data Processing and Electronics

Outline

- L1 Tracking Trigger Introduction and Challenges
- Pattern Recognition with Associative Memory
- Pulsar II Hardware Components
- Demonstration System
- Data Delivery
- ProtoPRM Mezzanine Firmware
 - Data Organizer
 - PRAM
- Conclusion

Level-1 Track Trigger Challenges

Data Formatting and Delivery

Partitioning

Data Processing

- Pattern Recognition (AM)
- Track Fitting (FPGA)

We use the divide and conquer approach...

J.Olsen

Detector Partitioning

in n

regions

9

regions in r-phi

8

- 48 Trigger Towers
- ~400 front end modules/tower
- For demonstration purposes assume one processor shelf per tower

Time Multiplexing

- A trigger tower processor consists of an array of independent engines
 - Pattern Recognition (AM)
 - Track Fitting (FPGA)
- High speed, low latency, non-blocking communication channels for efficient data delivery
- 20x time multiplexed
- Event rate 25ns \rightarrow 500ns

Pattern Recognition Associative Memory (PRAM)

- Factor of ~10x occupancy reduction
- More importantly, the hits/stubs are organized in found roads ("hits of interest") which makes the track fitting easier

🛟 Fermilab

29 Sept. 2016

J.Olsen

Pulsar II Hardware

7 TWEPP-16 Karlsruhe

Pulsar IIb Front Board

- Xilinx Virtex 7 FPGA
 - XC7VX690T -2 FFG1927 C
- 80 GTH serial transceivers
 - up to 11.3 Gbps (-2)
 - 40 for RTM
 - 28 for Full Mesh Fabric
 - 12 for Mezzanines
- Four FMC Mezzanine Cards
 - High Pin Count (HPC)
 - 35W, up to 60W possible
 - 34 pair LVDS/slot
 - 3 GTH lanes/slot
- Intelligent RTM / PICMG 3.8
- IPMC Mezzanine Card
- TTC timing and control over ATCA backplane

J.Olsen

Rear Transition Module (RTM)

- 10 QSFP+ transceivers
- 400 Gbps full duplex
- ATCA/PICMG 3.8 spec
- MMC is a ARM Cortex-M3 micro
 - Read sensors, access QSFP registers
 - Basic IPMI functionality: hot swap, LEDs, handle, etc.

Pattern Recognition Mezzanine (PRM)

- Designed to explore high performance and low latency PRAM architectures
- Single PRAM channel, pipelined readout
- Kintex UltraScale KU060 FPGAs
- Master FPGA
- Formatting, Data Organizer, Combiner, and Track Fitters
- Slave FPGA
 - PRAM emulation
 - 1k to 4k patterns
 - Develop new high speed FPGA-PRAM interfaces
 - Local bus is LVDS + 8 x 16 Gbps lanes
- AM ASIC (VIPRAM_L1CMS)

VIPRAM_L1CMS (130nm, two-tier) ASIC wafers in 3D processing now

J.Olsen

ProtoPRM Board

QSFP+ 4 x 10Gbps

Slave FPGA Kintex UltraScale -KU040 or KU060

> 2 x FMC HPC connectors; each has 24 pair LVDS and 4 GTH (up to 16 Gbps)

VIPRAM_L1CMS ASIC (TQFP176)

Master FPGA Kintex UltraScale KU040 or KU060

> Static RAM Cypress DDR II+ 400MHz 4MB

Demonstration System

- One trigger tower = 1 ATCA shelf
- This demonstration system supports different PRMs
 - FNAL ProtoPRM
 - INFN AM05/AM06 PRM
- Time multiplexed transfers to track finder engines which process one event
- Up to 20 PRMs per shelf
- This system architecture utilizes the ATCA full mesh backplane to fullest extent...

Demonstration System Data Flow

Pattern Recognition Board (PRB) shelf

- One Trigger Tower
- 10 Pulsar IIb
- Some boards with PRM Mezzanines

Data Source Board (DSB) shelf

- Emulates the output of ~400 modules
- 10 Pulsar IIb
- 100 QSFP+ fibers
- > 4Tbps

29 Sept. 2016

Data Delivery

Data Transfers on the Full Mesh Backplane

All ten boards do this continuously. First stubs to ProtoPRM by 1.5µs.

- Each Pulsar2b receives stubs on 40 links
- Stubs arrive in a "train" which contains stubs for up to 8 BX
- New train every 200ns
- Pulsar2b FPGA sorts stubs by BX and sends to 7 or 8 neighbors over the backplane
- Backplane transfers must complete in 200ns
- Each board can send up to ~100 stubs to each neighbor
- Full mesh channels are 2 x 10 Gbps, non-blocking

ProtoPRM Firmware Overview

- Conversion/Lookup Functions
 - Local stub to SSID
 - Road-ID to SSID
 - Local stub to global stub
- PRAM Bank
 - 6 layer
 - Pipelined Readout
 - ASIC and FPGA emulation
- Data Organizer
 - Pipelined to match AM
 - Stores stubs at address pointer by SSID
 - Stores multiple stubs per SSID
 - Writes like FIFO
 - Reads like RAM
- Combiner generates multiple stub combinations
- Track Fitter

J.Olsen

29 Sept. 2016

🛟 Fermilab

Data Organizer: Overview

- "smart database" stores stubs at the address pointed to by the SSID
 - SSID = 12 bits \rightarrow 4k memory locations
 - Store up to 4 stubs per SSID
- The DO architecture is fundamentally geared towards read-modify-write operations
- A redesign of the DO was needed because:
 - Our VIPRAM/PRAM readout is pipelined
 - The data organizer must concurrently store stubs for event N while recalling stubs for event N-1
 - DO must "ping pong" dual RAM banks
- RAM "scrubbing" functions are implemented
 - Periodic clearing of the RAM is done with writes (no global reset)

🔁 Fermilab

29 Sept. 2016

Prevent stubs from old events from being read out ("masking")

Data Organizer: Operation

- New design eliminates read-modify-write cycles
- Use 7-Series/UltraScale BlockRAM "read first mode"
 - As data is written into BlockRAM the *previous data* at that location is pushed to the output
- Four cascaded RAMs hold the stub information
- Simple, fast, and efficient configuration resembles an "array of FIFOs"
- Read latency is very fast, just like reading BlockRAM, stubs output in parallel
- Dual port BlockRAMs simplify the "ping pong" mechanism
 - Port A is used for writing event N stubs
 - Port B is used for reading event N-1 stubs

Data Organizer: Design

JTO 2016-05-06

7 Fermilab

As shown, DO can store up to 4 stubs per SSID. This can be increased easily by adding additional BlockRAMs.

One DO per layer is required. BlockRAMs

are wide enough to store global stubs.

19

J.Olsen

PRAM in **FPGA**

- Fully synthesizable VHDL model
 of current VIPRAM_L1CMS
 - Multi-tier pipelined readout
 - "CAM tier" processes stubs for the current event
 - "I/O tier" captures road flags and outputs road addresses for previous event
- Design optimized for 7-Series/UltraScale architecture
- Fairly close to "cycle accurate" timing
- 6 input layer buses, 12 bits per layer
- 1k to 4k patterns, fully programmable
- Option for "don't care bits"

20 TWEPP-16 Karlsruhe

J.Olsen

29 Sept. 2016

🚰 Fermilab

PRAM in FPGA: Road Serialization Logic

21 TWEPP-16 Karlsruhe

J.Olsen

29 Sept. 2016

‡Fermilab

PRAM in FPGA: Interface

- The ProtoPRM Master-Slave local bus consists of:
 - 8 GTH lanes, up to 16.3 Gbps / lane
 - 24 LVDS pairs, up to 1 Gbps / pair
- We plan to use this local bus to develop high performance interfaces for future PRAM ASICs
- Low latency is critical for this path
 - Roads must get back to the Data Organizer before next event arrives
 - GTH transceiver latency is a bit too high (~150ns)
 - Source synchronous DDR/serial has the lowest latency (~12ns with 240MHz clock)
- This interface is similar to VIPRAM_L1CMS ASIC

ProtoPRM timing

	Mahaa			
Signal name	Value			
Ar CLK_reg	1 to U			J LJ LJ L 7630 ns
nr lesting	true			
nr lest_Steps	1525 to 1526		<u> </u>	
Ar PRM_LOAD_reg	0			
™ PRM_EN_reg	1			
# Pulsar2b_EN_reg	0		← 21 CI K	
nr LUT_Initializer_EN_reg	0			240MHz
nr AM_Initializer_EN_reg	0			
⊞ nr L2G_LUT_Init_reg	{0, 0, 0, 0, 0, 00000, 00000, 00000, 0	Local Stubs in		
	0, 000, 00000000000000		Pood from	
nr AM_Pattern_Load_reg	0		ittoau itoiti	
⊞ nr AM_Pattern_reg	0000000			
⊞ # mode_reg	0			
⊞ nr LOC_reg	0000000, 0000000, 0000000, 00000	0000000, 0000000, 0000000, 0000000, 000000	000000	, 0000000, 000000 <mark>, 00</mark> 00000, 0000000, 000
# EOE_LOC_reg	0			
⊞ nr SS_reg	000, 000, 000, 000, 000, 000	000, 000, 000, 000, 000, 000		000, 000, 000, 000, 000, C
# EOE_SS_reg	0			
	000		00 550	
🖃 💵 GlobalStubsArray_reg	{{0, 00000, 00000, 00000, 00}, {0, 00			
	{0, 00000, 00000, 00000, 00}, {0, 000		{0, 00000, 00000, 00000, 00}, {0, 00000, 00000, 00000, 00}, {0, 00000, 00000, 00000, 00000, 00000, 00000, 00000,	000, 00000, 00;, (0, 00000, 00000, 00
	{0, 00000, 00000, 00000, 00}, {0, 000	Event	{0, 00000, 00000, 00000, 00}, {0, 00000, 00000, 00000, 00}, {0, 00 <mark>000, 00000, 20</mark> 00, 0, 00000, 0	1000, 00000, 00\$, {0, 00000, 00000, 00000, 00
	{0, 00000, 00000, 00000, 00}, {0, 000		{0, 00000, 00000, 00000, 00}, {0, 00000, 00000, 00000, 00}, {0, 00000, 00000, 00000, 00000, 00000, 00000, 00000	000, 00000, 00\$, {0, 00000, 00000, 00000, 00
🖃 🛯 GlobalStubsArray_reg[0]	{1, 23156, 00000, 21CC9, 00}, {1, 22	{0, 00000, 000ba, 0000a, 00, 10, 10, 00000, 0000, 00000, 00},	0, 00000, 00000, 00000, 00;, {0, 00000, 00000, 00000, 00;, {0, 00000, 00000 <mark>,</mark> 00000, 00;, {0, 00000, 00;, {0, 00000, 00;, {0, 00000, 00;, {0, 00000, 00;, {0, 00000, 00;, {0, 00000, 00;}}}	<u>008</u> X X
	1, 23156, 00000, 21CC9, 00		0, 00000, 00000, 00000, 00	
	1, 22F5E, 00000, 1E665, 00		0, 00000, 00000, 00000, 00	
	1, 201B8, 00000, 22ACA, 00		0, 00000, 00000, 00000, 00	
	1, 1CB32, 00000, 1C1C8, 00		0, 00000, 00000, 00000, 00	
	1, 1BD27, 00000, 1B892, 00		0, 00000, 00000, 00000, 00	
	1, 1B794, 00000, 1AA33, 00		0, 00000, 00000, 00000, 00	
Current 1				
<u>7582 500 ps</u> 45 ms OTODAT STUDS				
Cursor3 7 527 50 28				

The overhead of conversion functions, lookup tables, data organizer, and PRAM is on the order of 100ns.

ProtoPRM Latency Estimate

- Target: total latency =< 4µs
- Data delivery = $1.5\mu s$
 - First stubs arrive at ProtoPRM input
- Stubs into Combiner/Track fitter @ 2.2µs
- Combiner/Track fitter latency on the order of 1µs

Summary

- Our L1CMS track trigger demonstration system is based around time multiplexed data transfers over the ATCA full mesh backplane
- Pulsar IIb front boards make up the backbone of the system
- ProtoPRM mezzanine boards are the track finder engines
- New firmware designs have been optimized for high performance, pipelined, low latency operation
 - Data Organizer
 - PRAM in FPGA
- Demonstration system integration is underway
- We look forward to sharing new results at TWEPP-17!

Backup Slides

J.Olsen

Link Performance: Full Mesh Backplane

- Many different full mesh backplanes were tested at Fermilab
- In late 2014, we purchased the next generation 100G Air-/-Plane backplane from COMTEL
- ALL of the 56 bidirectional links among 8 Pulsar2b boards were tested at 10.0 Gbps (PRBS7)
- The best and most consistent link performance to date

Link Performance: RTM

J.Olsen

Link Performance: Pulsar IIb to protoPRM

• 10.0 Gb/s: BER<1e-14

- 6.25Gb/s and 8.0 Gb/s also tested
- All 6 channels are error free
- Pulsar2b assigns 3 GTH to each FMC, while protoPRM has 4 available
- 10Gb/s is limited by FMC connector

Link Performance: protoPRM Local Bus

• 16.3 Gb/s, PRBS7: BER <1e-14

- 6.25, 8.0, 10.0 and 12.5 Gb/s also tested
- all 8 channels are error free

System Synchronization

Intra-Shelf

- User clocks on ATCA backplane connect to Pulsar2b FPGA
- Any Pulsar2b board can be master
- 40MHz LHC clock
- TTC A/B Channel Data
- M-LVDS tested to 100MHz (Northwestern Univ.)

Inter-Shelf

- TTC receiver FMC mezzanines installed on Pulsar2b boards
- Source is TTCci VME board
- Passive fiber splitter

J.Olsen

29 Sept. 2016

Pulsar2h

TTC

FMC

Pulsar2b Backplane Synchronization Logic

32 TWEPP-16 Karlsruhe

J.Olsen

29 Sept. 2016

‡ Fermilab