ProtoPRM: An FPGA-Based High Performance Pattern Recognition Memory Track Finder Mezzanine

J. Olsen¹, T. Liu¹, J. Wu¹, Z. Hu¹, Z. Xu²

¹ Fermi National Accelerator Laboratory, Batavia, Illinois U.S.A.
² Peking University, Beijing, CHINA

29 September 2016
Outline

• L1 Tracking Trigger Introduction and Challenges
• Pattern Recognition with Associative Memory
• Pulsar II Hardware Components
• Demonstration System
• Data Delivery
• ProtoPRM Mezzanine Firmware
 – Data Organizer
 – PRAM
• Conclusion
Level-1 Track Trigger Challenges

Data Source
• 15k modules/fibers
• 100 Tbps

Data Formatting and Delivery
• Partitioning

Data Processing
• Pattern Recognition (AM)
• Track Fitting (FPGA)

We use the divide and conquer approach...
Detector Partitioning

- Use regional multiplexing => divide the detector into 6x8=48 trigger towers

- 48 Trigger Towers
- ~400 front end modules/tower
- For demonstration purposes assume one processor shelf per tower
Time Multiplexing

• A trigger tower processor consists of an array of independent engines
 – Pattern Recognition (AM)
 – Track Fitting (FPGA)
• High speed, low latency, non-blocking communication channels for efficient data delivery
• 20x time multiplexed
• Event rate 25ns → 500ns
Pattern Recognition Associative Memory (PRAM)

- Factor of ~10x occupancy reduction
- More importantly, the hits/stubs are organized in found roads (“hits of interest”) which makes the track fitting easier
Pulsar II Hardware
Pulsar IIB Front Board

- **Xilinx Virtex 7 FPGA**
 - XC7VX690T-2 FFG1927 C
- 80 GTH serial transceivers
 - up to 11.3 Gbps (-2)
 - 40 for RTM
 - 28 for Full Mesh Fabric
 - 12 for Mezzanines
- Four FMC Mezzanine Cards
 - High Pin Count (HPC)
 - 35W, up to 60W possible
 - 34 pair LVDS/slot
 - 3 GTH lanes/slot
- Intelligent RTM / PICMG 3.8
- IPMC Mezzanine Card
- TTC timing and control over ATCA backplane
Rear Transition Module (RTM)

- 10 QSFP+ transceivers
- 400 Gbps full duplex
- ATCA/PICMG 3.8 spec
- MMC is a ARM Cortex-M3 micro
 - Read sensors, access QSFP registers
 - Basic IPMI functionality: hot swap, LEDs, handle, etc.
Pattern Recognition Mezzanine (PRM)

- Designed to explore high performance and low latency PRAM architectures
- Single PRAM channel, pipelined readout
- Kintex UltraScale KU060 FPGAs
- Master FPGA
 - Formatting, Data Organizer, Combiner, and Track Fitters
- Slave FPGA
 - PRAM emulation
 - 1k to 4k patterns
 - Develop new high speed FPGA-PRAM interfaces
 - Local bus is LVDS + 8 x 16 Gbps lanes
- AM ASIC (VIPRAM_L1CMS)

VIPRAM_L1CMS (130nm, two-tier) ASIC wafers in 3D processing now
ProtoPRM Board

QSFP+
4 x 10Gbps

Slave FPGA
Kintex UltraScale
KU040 or KU060

2 x FMC HPC
connectors; each has 24 pair
LVDS and 4 GTH
(up to 16 Gbps)

VIPRAM_L1CMS
ASIC (TQFP176)

Master FPGA
Kintex UltraScale
KU040 or KU060

Static RAM
Cypress DDR II+
400MHz 4MB
Demonstration System

- One trigger tower = 1 ATCA shelf
- This demonstration system supports different PRMs
 - FNAL ProtoPRM
 - INFN AM05/AM06 PRM
- Time multiplexed transfers to track finder engines which process one event
- Up to 20 PRMs per shelf
- This system architecture utilizes the ATCA full mesh backplane to fullest extent…
Demonstration System Data Flow

Pattern Recognition Board (PRB) shelf
- One Trigger Tower
- 10 Pulsar IIb
- Some boards with PRM Mezzanines

Data Source Board (DSB) shelf
- Emulates the output of ~400 modules
- 10 Pulsar IIb
- 100 QSFP+ fibers
- > 4Tbps
Pattern Recognition Board (PRB) is a Pulsar2b with one or two Pattern Recognition Mezzanine (PRM) boards installed. The FPGA on the PRB is tasked with delivering stubs to the proper PRM.

Stubs make **TWO** passes through the PRB before they arrive at the destination PRM boards.
Data Transfers on the Full Mesh Backplane

- Each Pulsar2b receives stubs on 40 links
- Stubs arrive in a “train” which contains stubs for up to 8 BX
- New train every 200ns
- Pulsar2b FPGA sorts stubs by BX and sends to 7 or 8 neighbors over the backplane
- Backplane transfers must complete in 200ns
- Each board can send up to ~100 stubs to each neighbor
- Full mesh channels are 2 x 10 Gbps, non-blocking

All ten boards do this continuously. First stubs to ProtoPRM by 1.5µs.
ProtoPRM Firmware Overview

- **Conversion/Lookup Functions**
 - Local stub to SSID
 - Road-ID to SSID
 - Local stub to global stub

- **PRAM Bank**
 - 6 layer
 - Pipelined Readout
 - ASIC and FPGA emulation

- **Data Organizer**
 - Pipelined to match AM
 - Stores stubs at address pointer by SSID
 - Stores multiple stubs per SSID
 - Writes like FIFO
 - Reads like RAM

- **Combiner** generates multiple stub combinations
- **Track Fitter**
Data Organizer: Overview

- “smart database” stores stubs at the address pointed to by the SSID
 - SSID = 12 bits → 4k memory locations
 - Store up to 4 stubs per SSID
- The DO architecture is fundamentally geared towards **read-modify-write** operations
- A redesign of the DO was needed because:
 - Our VIPRAM/PRAM readout is pipelined
 - The data organizer must concurrently store stubs for event N while recalling stubs for event N-1
 - DO must “ping pong” dual RAM banks
- RAM “scrubbing” functions are implemented
 - Periodic clearing of the RAM is done with writes (no global reset)
 - Prevent stubs from old events from being read out ("masking")
Data Organizer: Operation

- New design **eliminates read-modify-write cycles**
- Use 7-Series/UltraScale BlockRAM “read first mode”
 - As data is written into BlockRAM the *previous data* at that location is pushed to the output
- Four cascaded RAMs hold the stub information
- Simple, fast, and efficient configuration resembles an “array of FIFOs”
- Read latency is very fast, just like reading BlockRAM, stubs output in parallel
- Dual port BlockRAMs simplify the “ping pong” mechanism
 - Port A is used for writing event N stubs
 - Port B is used for reading event N-1 stubs
Data Organizer: Design

11 bit SSID = 32 BlockRAMs (3% KU060)
12 bit SSID = 64 BlockRAMs (6% KU060)

One DO per layer is required. BlockRAMs are wide enough to store global stubs.

As shown, DO can store up to 4 stubs per SSID. This can be increased easily by adding additional BlockRAMs.
PRAM in FPGA

- Fully synthesizable VHDL model of current VIPRAM_L1CMS
 - Multi-tier pipelined readout
 - “CAM tier” processes stubs for the current event
 - “I/O tier” captures road flags and outputs road addresses for previous event
- Design optimized for 7-Series/UltraScale architecture
- Fairly close to “cycle accurate” timing
- 6 input layer buses, 12 bits per layer
- 1k to 4k patterns, fully programmable
- Option for “don’t care bits”
PRAM in FPGA: Road Serialization Logic

32 x 32 Array

COLUMN-OR BITS

COL MUX

COL VECTOR

PRI ENC

COL NUM

Sort Nodes

Road Address

32 x 32 Array Sort Nodes
PRAM in FPGA: Interface

- The ProtoPRM Master-Slave local bus consists of:
 - 8 GTH lanes, up to 16.3 Gbps / lane
 - 24 LVDS pairs, up to 1 Gbps / pair

- We plan to use this local bus to develop high performance interfaces for future PRAM ASICs

- Low latency is critical for this path
 - Roads must get back to the Data Organizer before next event arrives
 - GTH transceiver latency is a bit too high (~150ns)
 - Source synchronous DDR/serial has the lowest latency (~12ns with 240MHz clock)

- This interface is similar to VIPRAM_L1CMS ASIC
The overhead of conversion functions, lookup tables, data organizer, and PRAM is on the order of 100ns.
ProtoPRM Latency Estimate

- **Target:** total latency $\leqslant 4\mu s$
- **Data delivery** = $1.5\mu s$
 - First stubs arrive at ProtoPRM input
- **Stubs into Combiner/Track fitter** @ $2.2\mu s$
- **Combiner/Track fitter latency** on the order of $1\mu s$
Summary

- Our L1CMS track trigger demonstration system is based around time multiplexed data transfers over the ATCA full mesh backplane.
- Pulsar IIb front boards make up the backbone of the system.
- ProtoPRM mezzanine boards are the track finder engines.
- New firmware designs have been optimized for high performance, pipelined, low latency operation.
 - Data Organizer
 - PRAM in FPGA
- Demonstration system integration is underway.
- We look forward to sharing new results at TWEPP-17!
Backup Slides
Many different full mesh backplanes were tested at Fermilab.

In late 2014, we purchased the next generation 100G Air-/Plane backplane from COMTEL.

ALL of the 56 bidirectional links among 8 Pulsar2b boards were tested at 10.0 Gbps (PRBS7).

The best and most consistent link performance to date.
Link Performance: RTM

• 10 QSFP+ modules in RTM
 – Design goal: 10 Gbps per lane
 – 400 Gbps to Pulsar IIb
• Links @ 10.0Gbps/PRBS7:
Link Performance: Pulsar IIb to protoPRM

• 10.0 Gb/s: BER < 1e-14

- 6.25Gb/s and 8.0 Gb/s also tested
- All 6 channels are error free
- Pulsar2b assigns 3 GTH to each FMC, while protoPRM has 4 available
- 10Gb/s is limited by FMC connector
Link Performance: protoPRM Local Bus

- 16.3 Gb/s, PRBS7: BER <1e-14
- 6.25, 8.0, 10.0 and 12.5 Gb/s also tested
- all 8 channels are error free
System Synchronization

Intra-Shelf
- User clocks on ATCA backplane connect to Pulsar2b FPGA
- Any Pulsar2b board can be master
- 40MHz LHC clock
- TTC A/B Channel Data
- M-LVDS tested to 100MHz (Northwestern Univ.)

Inter-Shelf
- TTC receiver FMC mezzanines installed on Pulsar2b boards
- Source is TTCci VME board
- Passive fiber splitter
Pulsar2b Backplane Synchronization Logic

- Pulsar2b FPGA
- IPMC
- 200MHz Oscillator
- TTC FMC Mezzanine (optional)
- LVDS
- CLK3A_IN → CLK3A_OUT → CLK3A_P/N → To ATCA Backplane
- CLK3B_IN → CLK3B_OUT → CLK3B_P/N → To ATCA Backplane
- Oscillator
- Oscillator

Diagram showing the synchronization logic for Pulsar2b, involving FPGA, IPMC, and synchronization signals such as CLK3A_IN, CLK3A_OUT, CLK3A_P/N, and CLK3B_IN, CLK3B_OUT, CLK3B_P/N, with LVDS connections and optional TTC FMC Mezzanine.