A Low-Power 10-bit 250-MS/s Dual-Channel Pipeline ADC in 0.18 µm CMOS

Xiaoke Wen^b, Qingjun Fan^a, Jinghong Chen^{a,b}, Yulang Feng^a, Yuxuan Tang^a, Zhiheng Zuo^a, Bozorgmehr Vosooghi^a, Datao Gong^c, Tiankuan Liu^c, and Jingbo Ye^c ^a Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA ^b Department of Electrical Engineering, Southern Methodist University, Dallas, TX 75275, USA ^c Department of Physics, Southern Methodist University, Dallas, TX 75275, USA xwen@mail.smu.edu, jinghong@uh.edu

Introduction

- High-resolution and low-power A/D converters are critical for multi-level modulations
- A 10-bit 250 MS/s low-power dual channel pipeline ADC is designed in 0.18µm CMOS technology
- To eliminate the sampling timing skew without using a calibration circuit, a unique clocking scheme that is applicable to bottom-plate sampling networks is adopted
- An opamp-sharing technique is proposed to reduce the power consumption without suffering from the memory effects
- The ADC achieves a maximum SNDR of 61.84 dB and a peak SFDR of 78.1 dB at 250 MS/s
- The ADC core consumes 32 mW of power under a 1.8-V power supply

Architecture

- A double sampled SHA shared by two time-interleaved channels, nine pipeline stages per channel including eight 1.5-bit per-stage MDACs and a 2bit backend flash
- Opamps are shared between the two interleaved channels based on the proposed dual-input opamp-sharing MDAC to improve the ADC power efficiency

Conventional double-sampled SHA structure

The proposed double-sampled SHA and the timing diagram

Dout

10b

50

40

30

0

ADC PER	 0.18µm CN 	
Technology	0.18-µm CMOS	
Conversion Rate	250MS/s	Conversion
Input Range	1.6Vpp	Input range
SNDR	61.84dB@17MHz input	
	77.8dB@17MHz input	Maximum S
SFDR	78.1dB@80MHz input	
	77.6dB@120MHz input	_ • Peak SFDF
Power Consumption	32 mW	

0.18µm CMOS
Conversion rate of 250 MS/s
Input range of 1.6Vpp
Maximum SNDR of 61.84 dB
Peak SFDR of 78.1 dB

÷ Shared opamp and bias circuit insensitive to the input common mode variation			the		Calibration cycle Convergence of the calibration process	FFT spectrum of the dual channel ADC with gain and offset calibration	SFDR vs input frequency			
PERFORMANCE COMPARISON							Conclusion	References		
Ref [1] [2] [3] This	VDD (V) 1.8 1.2 1.2 1.8	Fs (MS/s) 300 320 500 250	SFDR (dB) N/A 70 N/A 78.2	SNDR (dB) 56.6 53 52.8 61.8	Power (mW) 40 40 55 32	FOM (pJ/step) 0.24 0.78 0.31 0.14	 A 10-bit 250MS/s time-interleaved pipelined ADC with opamp-sharing using a unique timing scheme to eliminate the timing skew between channels is presented The pipeline ADC achieves an ENOB of 9.98 bits with a SFDR of 78.2 dB at 250MS/s and consumes 32mW 	 [1] M. Miyahara, H. lee, D. Paik, A. Mats loop interpolated pipeline ADC", IEEE V 126-127, June 2011. [2] A.Verma, B. Razavi, J. Fattaruso, B. CMOS ADC", IEEE Journal of Solid-Sta 3050, Dec. 2009. [3] E. Alpman, H. Lakdawala, L. Carl 	Juzawa, "A 10b 320 MS/s 40 mW open- /LSI Circuits, 2011 Symposium on, pp Bakkaloglu "A 10-bit 500MS/s 55-mW ate Circuits, vol. 44, no. 11, pp. 3039-	
work	1.0	200	70.2	01.0	52	0.11	of power under 1.8V supply	2.5GS/s 7b Time-interleaved C-2C SAR ADC in 45nm LP Digital CMOS", IEEE International Conf. of Solid-State Circuits, pp. 76-77, Feb. 2009.		

TWEPP 2016 - Topical Workshop on Electronics for Particle Physics, September 26 - 30, 2016, Karlsruhe Institute of Technology, Karlsruhe, Germany