A Fully Monolithic HV-CMOS Pixel Detector with a Time-to-Digital **Converter for Nanosecond Time Measurements**

R. Casanova¹, E. Vilella², S. Grinstein¹, G. Casse², J. Vossebeld² ¹Institut de Física d'Altes Energies (IFAE) ²University of Liverpool

Introduction

- •Work done in the context of the RD50 collaboration
- •Circuit designed to measure the Time of Arrival (ToA) and Time over Threshold (ToT) with nanosecond accuracy
- •Depleted Monolithic Active Pixel Sensor. Two different pixels:
 - •50x50µm²: analog front-end electronics on pixel, digital front-end electronics on the periphery
- •75x75µm²: analog and digital front-end electronics on pixel
- Sparse readout, only pixels with event information are readout
- •Two main purposes:
 - •Study the 150nm HV CMOS technology from LFoundry
 - •Study full monolithic pixel with TDC on pixel

LFoundry technology

- LFoundry 150nm process main features:
- High voltage CMOS technology
- Backside processing and stitching are possible
- •Extra isolation layer to avoid punch-through between n-wells inside a deep n-well.

Integration of CMOS circuits on pixel

Overall architecture

Leading Edge (LE) Tailing Edge (TE)

- •Digital circuit that measures the time when the Leading Edge (LE) and Tailing Edges (TE) of the discriminator occurs
- •ToT is calculated off-chip with the LE and the TE
- •The nano-second accuracy is obtained by measuring the LE and TE in two steps:
 - •Coarse measurement: capture of a 40-80MHz 8-bits global time stamp (LECORASE[7:0] and TECOARSE[7:0]). Digital electronics similar to FEI3.
 - •Fine measurement: the clock period of the time stamp is divided into 10 equal time intervals by a TDC (LEFINE[4:0] and TEFINE[4:0])
- •The pixel electronics includes:
 - •Analog front-end stage: CSA + discriminator. Included on pixel.
 - •Digital front-end electronics: electronics for coarse and fine time measurement. Either on pixel or periphery.
- •Dynamic SRAM memories for timing storage (26-bits)
- Pixel address hardwired (ROM)
- Hit flag. Priority encoder (AND/OR)
- •End of column includes a column time stamp generator and electronics to readout the time measurements and the address of the read pixel
- •Readout done as in H35DEMO ASIC

Time to digital converter

- •TDC based on Delay Elements (DE) instead of oscillators in order to reduce cross talk on pixel
- Current starved inverter as DE
- •Propagation time tunable by adjusting the bias current of the DE: 1ns-3ns
- •Power consumption depends on the propagation time:50nA-400nA per DE.
- •Delay line composed of two branches, one for LE measurement and the other for TE •The DE are adjusted as a function of the clock period of the global time stamp
- •Half a period is divided into five equal interval times by 4 DE (4-bits)
- •The level of the clock signal is used as an additional bit. It indicates in which half a period of the clock the event occurred.

Analog front-end electronics

- 6000e
- folded cascode amplifier
 - Base Line (BL) adjustable externally
 - Global threshold voltage
 - •4-b DAC to adjust locally the threshold voltage
 - Test pulse circuit

Main features	
Voltage supply	1.8V
Power consumption	< 54µW
Rise time	12ns
ENC	< 140e ⁻
Area	38μm x 22μm