Introduction

- Work done in the context of the RD50 collaboration
- Circuit designed to measure the Time of Arrival (ToA) and Time over Threshold (ToT) with nanosecond accuracy
- Depleted Monolithic Active Pixel Sensor. Two different pixels:
 - $50\times50\mu m^2$: analog front-end electronics on pixel, digital front-end electronics on the periphery
 - $75\times75\mu m^2$: analog and digital front-end electronics on pixel
- Sparse readout, only pixels with event information are readout
- Two main purposes:
 - Study the 150nm HV CMOS technology from LFoundry
 - Study full monolithic pixel with TDC on pixel

LFoundry technology

- LFoundry 150nm process main features:
 - High voltage CMOS technology
 - Backside processing and stitching are possible
 - Extra isolation layer to avoid punch-through between n-wells inside a deep n-well.
- Integration of CMOS circuits on pixel

Overall architecture

- Digital circuit that measures the time when the Leading Edge (LE) and Tailing Edges (TE) of the discriminator occurs
- ToT is calculated off-chip with the LE and TE
- The nano-second accuracy is obtained by measuring the LE and TE in two steps:
 - **Coarse measurement**: capture of a 40-80MHz 8-bits global time stamp (LECORASE[7:0] and TECORASE[7:0]), Digital electronics similar to FEI3.
 - **Fine measurement**: the clock period of the time stamp is divided into 10 equal time intervals by a TDC (LEFINE[4:0] and TEFINE[4:0])
- The pixel electronics includes:
 - **Analog front-end stage**: CSA + discriminator. Included on pixel.
 - **Digital front-end electronics**: electronics for coarse and fine time measurement. Either on pixel or periphery.
- Dynamic SRAM memories for timing storage (26-bits)
- Pixel address hardwired (ROM)
- Hit flag. Priority encoder (AND/OR)
- End of column includes a column time stamp generator and electronics to readout the time measurements and the address of the read pixel
- Readout done as in H35DEMO ASIC

Time to digital converter

- TDC based on Delay Elements (DE) instead of oscillators in order to reduce cross talk on pixel
- Current starved inverter as DE
- Propagation time tunable by adjusting the bias current of the DE: 1ns-3ns
- Power consumption depends on the propagation time: 50µA-400µA per DE
- Delay line composed of two branches, one for LE measurement and the other for TE
- The DE are adjusted as a function of the clock period of the global time stamp
- Half a period is divided into five equal interval times by 4 DE (4-bits)
- The level of the clock signal is used as an additional bit. It indicates in which half a period of the clock the event occurred.

Analog front-end electronics

- Current Sense Amplifier based on a single folded cascade amplifier
- Base Line (BL) adjustable externally
- Global threshold voltage
- 4-b DAC to adjust locally the threshold voltage
- Test pulse circuit

Main features

- Voltage supply: 1.8V
- Power consumption: < 54µW
- Rise time: 12ns
- ENC: < 140e
- Area: 38µm x 22µm