
• extremely scalable
 ‣ extension of Verilog
 ‣ Verification (and RTL)
• C++ like syntax
 ‣ easy data modelling
 ‣ object oriented
• interfaces
• assertion language (SVA)
• randomization and coverage support
• Direct Programming Interface (DPI)

System Verilog

• Coverage-Driven simulation (CDV)
• random generation of test vectors
 constrained by a user
• high level of abstraction
 (Transaction Level Modelling)
• EDA vendors provide libraries to
 verify popular interfaces
 (Ethernet, SPI, I2C, etc.)

V
irt

ua
l S

eq
ue

nc
e

r

CPU Mem

Periph Periph

DUT

Verification Environment

Verification Component Repository

vc 1

mon driver

mon driver

bus vc

mon driver

bus vc

vc 2

mon driver

vc 1

mon driver

mon

vc 2

mon driver

Legend

monitor

sequencer

vc x

mon driver

interface verification environment

UVM concept

• use issue ticketing system to share with other developers spotted bugs and ambiguity of the DUT specification (Tip: Jira)
• management tools
 ‣ reduce maintenance
 ‣ improve maintenance
 ‣ instead of one long, launch few shorter
 simulations in parallel
 ‣ change randomization seed

 Tip: Check Questa Verification Management

• control progress of the verification process
 ‣ coverage metrics
 ‣ corner cases can be reached by specialized sequences
• swap the RTL description of the DUT with a back annotated netlist
 and rerun the tests
 ‣ more realistic DUT description including internal delays

Step 3: Actual verification

• build a generic environment eventually customized by the specific tests
 ‣ use EDA libraries for standard interfaces (Tip: Questa Verification IP)
 ‣ create a library and reuse your agents for your custom interfaces
 ‣ take advantage of UVM configuration, logging and factory classes
 ‣ follow UVM patterns (environment, item execution, etc.)
• do not use hierarchical paths to DUT inside the verification environment
 ‣ create dedicated interfaces
 ‣ use assertions in a top module or interfaces
 ‣ use System Verilog directives (`define)
• define basic transactions
 ‣ recording makes a waveform more readable
• make extensive use of randomization (use constraints)
• integrate the simulation with software over DPI
 ‣ facilitates debugging (eg. Ethernet packets view in Wireshark)
 ‣ allows debugging of the DUT interfaced with its slow control/DAQ software
• develop tests
 ‣ generic test
 ‣ inherit from the above specialized tests with dedicated sequences, eg.
 spiTest, chargeInjectionTest...

Tip: Look for help on https://verificationacademy.com/

Tip: Questa provides add-on for MS Excel and Word and supports Open Office

Step 1: Verification plan

• extract verification points from the chip specification
• choose the most appropriate implementation of the coverage model for each point of the plan:
 Covergroup Modelling : checking permutations of condition and state when a known
 result is achieved (System Verilog Covergroups)
 Cover Property Modelling: checking that a set of state transitions has been observed
 (System Verilog Assertions)

Step 2: Verification platform

 Tip: Check https://gitlab.cern.ch/CLICdp/HDLVerificationLibrary

Adrian Fiergolski1)
on behalf of the CLIC detector and physics (CLICdp) collaboration
1)The European Organization for Nuclear Research
 Geneva, Switzerland

The Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification
(CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the
CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with a structured
plan. Those goals are targeted further by a developed testbench, which generates valid stimuli and sends them to a device under test (DUT). The progress is
measured by coverage monitors added to the simulation environment. This way, the non-exercised functionality can be identified. Moreover, the additional
scoreboards indicate undesired DUT behaviour.
Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow:
 •the CLICpix2 65 nm CMOS hybrid pixel readout ASIC design;
 •the C3PD 180 nm HV-CMOS active sensor ASIC design;
 •the FPGA-based DAQ (µASIC) system of the CLICpix chip.

Different interfaces (Ethernet, trigger and timing interface, I2C, SPI) which stimulate the DUTs are handled by complex and versatile testbenches enabling
an exhaustive system verification and identification of difficult-to-track design flaws.

Topical Workshop on Electronics for Particle Physics (TWEPP 2016), September 26th-30th 2016, Karlsruhe, Germany

µASIC

CLICpix2

C3PD

