An Advanced Power Analysis Methodology targeted to the Optimization of a Digital Pixel Readout Chip Design and its Critical Serial Powering System

Sara Marconi1,2,3, Stella Orfanelli1, Michael Karagounis4, Jorgen Christiansen1, Pisana Placidi2,3, Tomasz Hemperek5

I. INTRODUCTION

The HL-LHC pixel detectors for the ATLAS and CMS experiments require significantly increased rate capability and low material budget to deliver the required physics performance. To meet these goals, a new pixel chip in 65 nm CMOS technology is being designed within the RDS3 collaboration adopting low power design techniques and integrating an on-chip shunt regulator that allows for a serial powering scheme across the detector modules.

- For this scheme, a power supply per serial power chain will supply a constant current to the front-end chips. The I to V conversion will be done on-chip from two parallel powered shunt-LDO regulators [1], one for the analog and one for the digital domain. A shunt-LDO consists of:
 - a LDO regulator generating the low supply voltage
 - a shunt consuming the "surplus" current not drawn by the load
- A major worry is the presence of digital power variations, which could couple into the analog domain and if higher than the current provided to the serial chain, would cause chip failure.
- Considering averaging of power variations due to multiple stages of local decoupling and including a safety margin, the maximum current must be provided to the serial power chain.

II. METHODOLOGY AND POWER RESULTS

a. Power estimation for architectural choices

One of the fundamental architectural choices to be made is related to the use of the clock gating technique:

- source of power variations;
- its use was initially discouraged to keep power more constant.

Power profiles from the gate-level description (64x4 array):

- significant increase in power consumption without any form of clock gating;
- more than 85% power increase to keep power constant cannot be tolerated based on the chip specifications [3].

b. Detailed power analysis after Place&Route

Need for post place-and-route power analysis:

- to early provide accurate specifications to the powering system;
- pure gate-level analysis shows around 50% underestimation (limited modeling of clock tree and parasitics).

Average power estimations under different corners and activity conditions:

- DUT: 64x4 pixel array with digital logic similar to the foreseen final chip;
- delay corner shown TYP (TYP RC corner, 25°C, lib: tcbn69ptc_ecsm, voltage 1.2);
- with fully extracted parasitics (.sref files).

Dynamic power analysis achieved by extensive power profiling (i.e. look at power evolution over time):

- variety of operating conditions;
- peaks are evaluated at different time constants (1 ns, 25 ns, 100 ns, 1 µs, 10 µs);
 - short time constant (≈5–25 ns) should be filtered by on-chip decoupling
 - longer time constant (≈1 µs): power averaged over such time window seen at the powering system level
- reduced simulation window to highlight different averaging constants.

Hits and triggers

c. Application: optimization of pixel core logic

The power methodology is used for the optimization of the pixel array logic of the RDS3 chip. A Bly hierarchical block (digital core, containing 2x2 pixel regions, is being optimized for power, area, high efficiency (additional memory) and radiation tolerance:

- "peak power" is obtained with 1 µs averaging time constant.

III. SHUNT-LDO SIMULATIONS WITH PROFILES

a. Topology and setup

- “Across-module serial power” is a current based powering scheme where modules are powered via constant current flowing from module to module and chips within a module are parallel powered.
- Two serially powered modules of four chips each were simulated based on the detailed shunt-LDO design.
- Local decoupling capacitors (chip’s power grid, input/output shunt-LDO capacitors with ESR), parasitic inductances (wire-bonds, cabling), resistances and capacitances (pads) were also described.
- The digital activity of a chip was simulated as presented in the previous section (1 ns resolution) and the topology is shown in the sketch below.
- The impact of the digital activity to the rest of the serial power chain and the analog power domain of the chips was studied.

b. Impact of digital activity on digital voltage supply

- 100 mV variation (10%) is allowed for the digital domain of the chip.

IV. CONCLUSIONS AND FUTURE WORK

- The presented power analysis methodology has been successfully used for:
 - architectural choices (e.g. clock gating)
 - detailed power profiling in realistic operation at different time constants
 - optimization of the critical digital array logic of the RDS3 chip.
- The digital activity power profiles have been used as an input to a detailed system architecture of the serial powering topology, including the detailed shunt-LDO design and parasitics.
- The impact of digital power fluctuations to the digital and analog voltage supply of chips in the same or neighbor modules has been seen to be tolerable.
- Future steps include testing a prototype chip with the simulated shunt-LDO to confirm simulation results and new simulations under extreme conditions for power variations (background events, machine cycle, failure scenarios) for extensive verification.

References

Topical Workshop on Electronics for Particle Physics – September 26-30, 2016, Karlsruhe, Germany. Contact person: SARA MARCONI, sara.marconi@cern.ch