Motivation & Status

The purpose of the TMRG toolset is to automatize the process of triplicating digital circuits.

The tool:
- is compatible with ASIC design flow used in the HEP (Verilog-95 RTL, Cadence tools)
- does not constrain user's coding style (the source Verilog should be synthesizable)
- allows to obtain various flavors of TMR (registers only, full triplication, logic triplication, clock triplication)
- assists in the physical implementation stage (synthesis, P&R)
- assists designer in the verification process (generation of SEE)
- can be run in a batch mode (fully automatic flow)

Project started: March 2015
- Project size: >13000 lines of code
- Documentation size: 60 pages (pdf)

Constraining the design

- designer decides which blocks and signals are to be triplicated by using TMRG directives (placed in Verilog code, configuration file, or command line argument)
 - `// tmrg default triplicate_in_var_triplicate`
 - `// tmrg default do_not_triplicate_combLogic`

TMRG automates “conversion” between triplicated and not triplicated signals:
- if non triplicated signal is connected to a triplicated signal a passive fanout is added
- if a triplicated signal is connected to a non triplicated signal a majority voter is added

Tripling Finite State Machine

```verilog
tmrGroupA # .combLogic() ;
```

SEU / SET Generator (seeg)

- generates Single Event Effects stimulus to be used for transient simulations

Placement Generator (plag)

- generates placement directives (for Encounter)

TMRG Toolset

- `tmrg` - triplicates the Verilog code and generates synthesis constraints (for the Design Compiler)
- `tbg` - generates generic test bench template (with /without TMR, SEE injection, post synthesis, post PNR)
- `plag` - generates placement directives (for Encounter)
- `seeg` - generates Single Event Effects stimulus to be used for transient simulations

TMRG Digital Design Flow

- **User constraints**
 - functional verification
 - synthesis
 - logic synthesis
 - P&R constraints
 - SEE stimulus
- **Constraining the design**
 - user constraints
 - testbench generation
 - timing verification
 - process
 - tmrg

Triple Modular Redundancy Generator

http://cern.ch/tmrg

TMRG Process

- **Behavior Description**
 - Verilog code
 - Logic synthesis
 - Timing verification
- **User Constraints**
 - Functional verification
 - Logic synthesis
 - P&R constraints
 - SEE stimulus
- **Constraining the design**
 - User constraints
 - Testbench generation
 - Timing verification

Motivation & Status

- The tool is designed to automate the process of triplicating digital circuits.
- It provides various options for triplication (registers only, full triplication, logic triplication, clock triplication).
- It assists in the physical implementation stage (synthesis, P&R) and in the verification process (generation of SEE).
- It can be run in a batch mode for fully automatic flow.

Constraining the design

- The designer decides which blocks and signals are to be triplicated by using TMRG directives.
- The tool automates the conversion between triplicated and not triplicated signals.
 - Non triplicated signals are connected to triplicated signals with passive fanouts.
 - Triplicated signals are connected to non triplicated signals with majority voters.

Tripling Finite State Machine

```verilog
module combLogic();
  input a, b, c,
  output out,
  wire in,
  reg state;
  always @ (posedge clk)
    state <= stateNext;
  always @ (posedge clk)
    stateNext <= in ^ state;
  endmodule
```

SEU / SET Generator (seeg)

- Generates Single Event Effects stimulus to be used for transient simulations.

Placement Generator (plag)

- Generates placement directives for Encounter.

TMRG Toolset

- **tmrg** - triplicates the Verilog code and generates synthesis constraints for the Design Compiler.
- **tbg** - generates generic test bench template (with or without TMR, SEE injection, post synthesis, post PNR).
- **plag** - generates placement directives for Encounter.
- **seeg** - generates Single Event Effects stimulus to be used for transient simulations.

TMRG Digital Design Flow

- User constraints:
 - Functional verification
 - Logic synthesis
 - P&R constraints
 - SEE stimulus
- Constraining the design:
 - User constraints
 - Testbench generation
 - Timing verification
- Process:
 - tmrg

TMRG Process

- **Behavior Description**:
 - Verilog code
 - Logic synthesis
 - Timing verification
- **User Constraints**:
 - Functional verification
 - Logic synthesis
 - P&R constraints
 - SEE stimulus
- **Constraining the design**:
 - User constraints
 - Testbench generation
 - Timing verification

Motivation & Status

- The tool aims to automate the process of triplicating digital circuits.
- It supports various triplication options (registers only, full triplication, logic triplication, clock triplication).
- It assists in physical implementation (synthesis, P&R) and verification (SEE generation).
- It can be run in batch mode for automatic processing.

Constraining the design

- The designer specifies which blocks and signals are to be triplicated using TMRG directives.
- The tool automates the conversion between triplicated and not triplicated signals.
 - Non triplicated signals are connected to triplicated signals with passive fanouts.
 - Triplicated signals are connected to non triplicated signals with majority voters.

Tripling Finite State Machine

```verilog
module combLogic();
  input a, b, c,
  output out,
  wire in,
  reg state;
  always @ (posedge clk)
    state <= stateNext;
  always @ (posedge clk)
    stateNext <= in ^ state;
  endmodule
```

SEU / SET Generator (seeg)

- Generates Single Event Effects stimulus.

Placement Generator (plag)

- Generates placement directives for Encounter.

TMRG Toolset

- **tmrg** - triplicates the Verilog code and generates synthesis constraints for the Design Compiler.
- **tbg** - generates generic test bench template (with or without TMR, SEE injection, post synthesis, post PNR).
- **plag** - generates placement directives for Encounter.
- **seeg** - generates Single Event Effects stimulus to be used for transient simulations.