The ATLAS Level-1 Calorimeter Trigger (L1Calo)

- Hardware-based, pipelined system to identify high-p_ objects based on coarse-granularity analogue input from the ATLAS Liquid Argon (LAr) and Tile Calorimeters.
- Consists of three main subsystems:
 - **PreProcessor (PP)**: receives, digitises and processes the analogue signals and transmits digital data, representing the transverse energy deposits (E_t) for the identified bunch-crossing (BC) to the subsequent processors.
 - **Cluster Processor (CP)**: identifies isolated clusters of electrons, photons, taus or hadrons.
 - **Jet/Energy-sum Processor (JEP)**: identifies jets and composes the total transverse energy.
- Transmits the results to the Central Trigger Processor (LICTP) in approximately 2µs after the collision has occurred.

The L1Calo Phase-I Upgrade

- Additional fine-granularity digital input from LAr Calorimeter.
- New subsystems to process the digital input and to maintain the trigger performance at high LHC luminosity:
 - **Electron Feature Extractor (eFEX)**: provides similar functionality to CP, but refined.
 - **Jet Feature Extractor (jFEX)**: provides similar functionality to JEP, but refined.
- **Global Feature Extractor (gFEX)**: identifies large jets.
- **New module, Tile Rear Extension (TREX)**, in the PreProcessor to provide the Tile digitised results to the FEX processors as well as to CP and JEP.
- The part of PreProcessor that processes analogue signals from LAr, and the CP and JEP subsystems will be decommissioned after the performance of the FEX processors has been validated.
- Remaining PreProcessor will be replaced in Phase-II upgrade by a Tile digital pre-processing system.

The PreProcessor System

- Highly-parallel system with fast trigger-specific algorithms implemented in Field Programmable Gate Array (FPGA) based devices, to process 7168 analogue signals from the entire ATLAS Calorimeter.
- Highly-modular system, consisting of 124 hardware-identical PreProcessor Modules (PPMs) organised into 8 VME crates. The PPMs in two crates process analogue signals from the Tile Calorimeter, while the others process signals from the LAr Calorimeter.

The PreProcessor Module

- Processes 64 analogue signals describing 0.1 x 0.1 jets and computes the total transverse energy from the entire ATLAS Calorimeter.
- 16 Multi-Chip Modules (MCM), each of which processes 4 analogue calorimeter signals:
 - Digitisation with 10-bit resolution and sampling frequency of 40.08 MHz.
 - Nanosecond phase-adjustment of digitisation strobes.
 - Coarse synchronisation of pulses originating from the same collision.
 - Dynamic, BC-wise pre- and post-suppression.
 - Identification of the E_t deposits per trigger channel and of the corresponding BC in time (BCR Filter and PeakFinder for pulses in linear range, dedicated algorithms for saturated pulses).
- Separate noise suppression, pedestal subtraction and fine-calibration of the extracted E_t values for each digitisation processor (CP, JEP).
- Re-ordering of the trigger cells to better utilise the bandwidth to the CP system (BC multiplexing).
- Pre-summing of the four calibrated E_t values into a 0.2 × 0.2 jet element for the JEP system.
- Pipelined event data readout for monitoring purposes.
- Rate-metering and histogramming for trigger-independent monitoring purposes.
- Transmission of digital energy results to CP and JEP as LVDS signals at a rate of 480 Mb/s.

- **1 Readout Merger (RM)** FPGA to configure, control and monitor the module over the VMEbus, and to transmit the event data to the ATLAS DAQ system via a rear-mounted G-Link Transmitter Module.
- **1 TDC Decoder** card as interface to the ATLAS Trigger System, Timing and Control System.
- **1 CanBus interface to send slow-control data to the ATLAS Detector Control System (DCS).**
- **1 LVDS Cable Driver** (LCDD) card to transmit the digital energy results over up to 15m long cables to CP and JEP.

The Tile Rear Extension Module (TREX)

- Rear transition module in the two PreProcessor crates that process analogue signals from the Tile Calorimeter.
- Acts as a physical extension of the PPM in the corresponding crate slot, to:
 - Transmit the pre-processing digital results via optical links to the new FEX processors at 11.2 Gb/s (L1Calo baseline rate).
 - Maintain the legacy trigger path by sending the same digital results via parallel pair cables to the CP and JEP processors.
 - Collect and format the PPM event data and local slow-control data.
- Interface via multi-Gb/s optical links to Front-End Link Exchange (FELIX) devices to transmit event data to DAQ and slow-control data to DCS, and to receive TTC information and DCS specific commands.
- Can handle double data rate input from the PPM (960 Mb/s). This mode will be enabled with an upgrade of the LCD card (passive LCD) and only after the CP and JEP have been decommissioned.
- Is connected to the VME crate controller via the REM FPGA on the PPM for configuration, control and monitoring purposes.

The TREX Prototype Module

- 18-layer, 150 mm x 366 mm PCB, hosting:
 - 4 Xilinx Artix-7 FPGAs (XC7A35T2C2G324C), called ‘LVDS Data In-Out’ (DIO), to produce copies of the pre-processing results for the CP, JEP and FEX processors.
 - pre-compensation circuit to drive the signal copies for CP and JEP over long parallel pair cables.
 - 1 Xilinx Kintex UltraScale FPGA (XCZU115-FLVF1924C), called PreProcessor Data Collector (PREDATOR), with 64 GTH Gigabit transceivers that support data rates up to 16.3 Gb/s. The PREDATOR FPGA performs most of the tasks assigned to the module:
 - Receive, format and transmit copies of the pre-processing results via 48 links to the FEX processors.
 - Receive and analyze pre-processing results via 12 links in loopback mode for diagnostic purposes.
 - Collect, format and transmit the PPM event data to DAQ and the local slow-control data to DCS via one link.
 - Receive and decode TTC information and DCS commands via one link.
 - Playback facility to test and debug all the high-speed interfaces.
 - Build local monitoring and status information and deliver it to the VME.
 - Four 12-channel Sumelec FireFly optical transceivers (ECUO-T12-14-030-1-1-2-01; 14 Gbps/channel) to send the pre-processing results to the FEX processors.
 - One 12-channel Sumelec FireFly optical receiver (ECUO-R12-14-030-0-1-1-2-01; 14 Gbps/channel) to test the transmission over optical links in loopback mode for diagnostic purposes. The receiver will be removed in the next hardware iterations.
 - One 4-channel Sumelec FireFly Duplex Transceiver (ECUO-B4-14-030-0-1-1-2-01; 14 Gbps/channel) to implement the bi-directional communication with the FELIX devices.
 - One 16-channel PLL chip (N5M55) to generate low-jitter clock pulses for the multi-Gb/s transmission and to supply the TREX and the PPM with 40.08 MHz based clock pulses in the absence of the TTC system in the laboratory environment.
- High-speed transmission tested with Kintex UltraScale based (XCZU440) development board:
 - optical transmission up to 10 Gb/s (using SFP+ optical transceivers)
 - electrical transmission up to 12.8 Gb/s (loopback mode on PCB)
 - BER smaller than 10^-9 (using Xilinx integrated statistical eye tools and oscilloscope)

First TREX prototype board is currently being manufactured.
- Intensive and thorough testing will be carried out at CERN, together with the FEX processors and the FELIX devices, in December 2016 and January 2017.
- For final design review is planned for spring 2017.
- Production readiness review and mass production expected in 2018.