TOFFEE

a fully custom amplifier-comparator chip for timing applications with silicon detectors

Francesca Cenna

N. Cartiglia, A. Di Francesco, J. Olave, M. Da Rocha Rolo, A. Rivetti, J. Varela
Why TOFFEE

TOFFEE rises from the need to read out silicon detectors designed for timing

Time-tagging will be a major concern in the future HL-LHC environment:

- 150-200 events/bunch crossing
- Time RMS between vertexes ~ 150 ps, according to CMS simulations

Reconstruction of time information allows to distinguish different overlapping events. The «z by timing» coordinate will be calculated according to $\Delta z = c \Delta (t_1 - t_2)/2$

We plan to reconstruct the time information with $\sigma_t \sim 20$ ps i.e. z position with an accuracy of ~ 4 mm
Timing in event reconstruction

Timing allows to resolve different events otherwise undistinguishable by adding an extra dimension.
Time resolution

Time is set when the signal crosses the comparator threshold

The timing capabilities are determined by the characteristics of the signal at the output of the preamplifier and by the TDC binning.

\[\sigma_t^2 = \left(\frac{N}{dV/dt} \right)^2 + \left(\frac{\delta_{\text{Bin}}}{\sqrt{12}} \right)^2 + \sigma_{\text{Time Walk}}^2 \]

- Noise and steepness of the signal
- TDC contribution
- Sensor signal shape variations due to non homogeneous energy deposition (Landau fluctuations)
 - main contribution to jitter

Required:
- Noise minimization
- Large and uniform signals
- Short rise time

FAST SENSOR + FAST READOUT!
Ultra Fast Silicon Detectors

UFSD have been studied to reconstruct the "time coordinate" with a silicon detector:

- They have a particular signal shape due to charge multiplication.
- Electrons multiply when crossing a high electric field layer (gain layer) generating additional electrons and holes (holes multiplication is negligible).
- The main part of the signal is produced by gain holes drifting to p electrode.
- UFSD have low gain (~ 10): low shot noise, milder electric fields, possible electrode segmentation, behavior similar to standard silicon detectors.
UFSD – slew rate and thickness

The shape of the signal depends on the sensor thickness:
- **Amplitude** depends on the **gain value**
- **Length** depends on sensor **thickness**

For a fixed gain:
- Amplitude = constant
- Rise time $\sim 1/thickness$

Slew rate:
- Increases with gain
- Increases $\sim 1/thickness$

The key for a fast sensor is then:
- thin bulk
- charge multiplication
50 um UFSD signals

Typical 50 um, gain 15 UFSD MIP signal charge ~ 8 fC
signal length ~ 1.2 ns

We have a fast sensor providing steep signals

we need a fast readout electronics to reach the best time resolution!
The sensor – CT-PPS

This UFSD is specifically designed for CMS Totem Precision Proton Spectrometer

- 50 um thick
- Gain ~ 15
- 32 fat strip array:
 - 16 thinner 3 mm x 0.5 mm (closer to beam line),
 - 16 thicker 3 mm x 1 mm
- 50 um dead space between pads
- \(C_{\text{det}} = 6 \text{ pF} \) (thinner strips), 12 pF (thicker strips). Only geometry dependent

The signal from each pad will be detected by a **DC-coupled front-end** mounted close to the detector module inside PPS roman pot (RP)
TOFFEE - overview

TOFFEE is designed in UMC 110 nm CMOS technology.
The ASIC has 8 channels, each channel consists of:

- Amplifier
- Single threshold discriminator
- Delay line to stretch discriminator output: High Precision TDC (HPTDC) reads pulses wider than 10ns
- LVDS driver for (HPTDC) connection

It is optimized for a sensor capacitance of 5-10 pF and an input charge between 3 fC and 60 fC.
The output is sent out of the roman pot to the existing HPTDC board through LVDS connections (32 pairs per detector module).

To read out a CT-PPS UFSD minimizing wire-bond length → 4 TOFFEEs
TOFFEE – signal processing chain

AMPLIFIER

DISCRIMINATOR
front-end side + back end side

Delay line

LVDS driver
to HPTDC

DELAY LINE = 10x delay blocks

Delay block
TOFFEE – specifications

Dynamic range: 60fC (linear preamplifier in the range 3fC – 60fC)

Preamplifier gain: ~ 7 mV/fC

GBW: 14 GHz

RMS noise at Cdet= 6 pF: 800 uV

Discriminator output width: 2 – 14 ns

Delay line: 10 delay unit blocks, adding up to 12 ns to discriminator output to match HPTDC requirements

Power consumption: 18mW per channel

AVDD: 1.2V

DVDD IO: 2.5V

Expected dose at CT-PPS roman pot: NIEL ~ 7 *10^{14} \text{n}_{\text{eq}}/\text{cm}^2 , \text{TID} ~ 80 \text{ Mrad}
Preamplifier architecture

- Cascode amplifier with split current sources
- Right branch injects high current in the input transistor
- Resistors for noise shielding
- Differential buffer for load driving
The preamplifier signal has
- **fast rise time**: ~ 2 ns schematic, < 3 ns postlayout
- **high slope**

Requires high GBW amplifier (main power contribution)
Preamplifier signal (II)

Preamplifier response to typical 50 um UFSD MIP signal ($Q_{in} = 8$ fC) at $C_{det} = 6$ pF. Transient noise simulation

Amplitude ≈ 53 mV

Gain ≈ 7 mV/fC

Slope $= 25$ mV/ns

Rise time $= 2.1$ ns

Width ≈ 10 ns
Preamplifier signal (III)

Preamplifier output as a function of detector capacitance

\[\begin{align*}
C_{\text{det}} &= 5 \text{ pF} \\
C_{\text{det}} &= 10 \text{ pF} \\
C_{\text{det}} &= 15 \text{ pF} \\
C_{\text{det}} &= 20 \text{ pF} \\
C_{\text{det}} &= 25 \text{ pF} \\
C_{\text{det}} &= 30 \text{ pF}
\end{align*} \]
Preamp noise curve and linearity

Simulated amplifier output noise as a function of detector capacitance

Preamplifier gain linearity as a function of input charge

TOFFEE noise curve

- rms noise (mV)
- rms ENC (e)

Preamplifier linearity
Delay line

- Input width = 2 ns
- Output width = 14.9 ns
- Falling edge delay ~ 13 ns
- Delay line jitter
- 580 fs max width
TOFFEE - layout

A0 domain: amplifier
A1 domain: buffer + disc1
A2 domain: disc2 + delay line

I/O domain

Analog Input (8ch, 16pads)

LVDS Output (16lines)

3.6 mm

2.4 mm
TOFFEE – simulated time resolution

Realistic estimation of jitter as a function of input charge with parasitics.

A time resolution of \(\sim 45 \text{ ps} \) is expected for 1 single detector + readout module for a MIP signal.

Time resolution can be further improved by putting more planes in parallel, e.g. for 4 planes.

\[
\sigma_t = \frac{jitter}{\sqrt{N \text{ planes}}} \quad \sim 22 \text{ ps}
\]
Characterization and test activities (I)

TOFFEE is ready for testing. Two dedicated boards have been designed:
• LIP board (by R. Silva): TOFFEE + RMD APDs
• Turin board (by M. Mignone): TOFFEE + CT-PPS UFSD

Both have:
• external bias to find the best setting
• trimmers for discriminator threshold tuning

On LIP board: SAMTEC connector for APD adapter board
On Turin board: UFSD glued directly on the board, very close to the chip
Characterization and test activities (II)

TOFFEE has been just turned on
Testing is scheduled for October (LIP board + APDs)
and November/December (Turin board + UFSD)

Foreseen tests involve:
• Amplifier linearity
• Dynamic range
• Gain measure
• Noise tests
• Laser tests
TOFFEE wire-bonded to LIP board
TOFFEE output

- Preliminary test to check TOFFEE’s status with LIP board
- Chip response to 400 mV high, 10 ns wide pulse
Conclusions and outlook

• We have developed a fully-custom amplifier + comparator ASIC to read-out silicon detectors for timing

• TOFFEE’s amplifier rise time (~ 2-3 ns) and slope (> 20 mV/ns) allow to minimize front-end jitter.

• TOFFEE + UFSD simulated time resolution is ~ 45 ps for a MIP signal for a single module. By using 4 modules this value drops to ~ 22 ps

• First test results will be available by the end of October

• An improved version is foreseen for winter 2016-17
Thank you for your attention!
BACKUP
UFSD 50 um – beam test results

CNM 50 um UFSD have been tested in August 2016 at CERN

• Fully custom readout by UCSC + additional gain stage
• very accurate SiPM as trigger (~ 15 ps)

Time resolution as difference UCSC readout – SiPM

An excellent time resolution with 50 um thick UFSD is achievable!
Delay line

- Delay line stretches discriminator output
- Each delay line block is composed by a delay unit and an OR gate
- Delay unit output and input are sent to OR gate
- Each delay block is repeated 10 times to reach the desired output width