Implementation of the data acquisition system for the Overlap Modular Track Finder in the CMS experiment

Wojciech M. Zabolotny,1,2, Michal Bluj,3, Karol Burkowskij2, Adrian P. Byszuk1, Jakub Dobosz2, Krzysztof Doborab, Paweł Drabik1, Maciej Górski3, Artur Kalinowski2, Krzysztof Z. Kierzkowski2, Marcin Konecki2, Wojciech Okliński2, Michal Olszewski2, Krzysztof Poźniak1,2, Krystian Zawistowski2

1Institute of Electronic Systems, Warsaw University of Technology, 2Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 3National Centre for Nuclear Research

Introduction
Compact Muon Solenoid (CMS) is one of the experiments at the Large Hadron Collider (LHC) at CERN. After the successful operation in years 2010-2012, which resulted in the discovery of Higgs boson, it is currently undergoing the upgrade of its trigger, including the Level-1 muon trigger [1]. In the barrel-endcap transition region (see the Figure below) it is possible to combine signals from 3 types of muon detectors - RPC, DT, and CSC. The Overlap Muon Track Finder (OMTF) is a dedicated electronic system analyzing the data received from those detectors and finding trigger muon candidates. The result of the OMTF processing is transferred to the CMS Level-1 Global Muon Trigger.

OMTF data acquisition system (OMTF DAQ)

The OMTF DAQ is implemented together with the trigger algorithm [2] in the MTF7 MTCa board [3, 4]. The OMTF DAQ transmits to the CMS data acquisition system (CMS DAQ) the data, that were the source of the trigger decision, to monitor the trigger operation. Data from all detectors are concentrated, subjected to zero-suppression, and transmitted via AMC13 board located in the same MTCA crate.

Data triggering
The system should record only the data originating from the "triggered" BXes in which the L1A signal was asserted. However, in order to improve the power of the system, it is possible to define how many BXes before the L1A (up to 3) and how many BXes after the L1A (up to 4) should be recorded. Each recorded BX (RBX) in the event receives its "short, relative BX number" (SBXN - between 0 and 7) The BX in which the L1A was asserted has SBXN=3. The trigger rules limit the L1A rate to "no more than 1 trigger in 3 BXs, 2 in 25, 3 in 100, 4 in 2400 [5]. That means that two assertions of L1A may occur so near, that a few BXes may be "out" simultaneously, only two events. The example of such situation is shown in the figure below. To handle the RBX, the RBX record contains two fields, describing the association of the recorded BX with one L1A. The consecutive L1As are bound alternately to one of those records. This binding also defines the output FIFO used for the particular event in further processing.

Common data format
The AMC13 board requires that event data from all sources handled by a single MTF7 board be transmitted in a single event container as a payload consisting of 64-bit words [6]. To simplify analysis of DAQ data, it is assumed that each payload word may be analyzed independently. Therefore each word contains the 4-bit type identifier describing its type and 3-bit SBXN describing its time position (The event header contains the number of BX in which the corresponding L1A occurred). The only exception is the " Firmware" word that contains the last significant bits of versions of different components of the firmware. Currently, only 5 types are used, but to allow further extensions, 4 bits are allocated for type identifier.

References

Results
Currently, the OMTF DAQ has been tested in hardware with RPC links and has been found to work correctly at trigger rates up to 120 kHz.

Acknowledgement
Work supported by National Science Centre, Poland, grant 2013/11/B/ST2/02420 and 2015/19/B/ST2/02681.

Flexibility of the design
The presented DAQ system may be easily extended. Currently implemented features provide support both for data sources producing a single word per link in each BX, and for sources producing multiple data words in each BX, and delivering them with a certain delay (like RPC). Adding a new data source requires:
• Implementing the filter deciding whether the particular data word originating from a recorded BX should be transmitted to DAQ (zero-suppression)
• Implementing the formatter, that packs the received data into the sorter queue, and converts the data on the output of the sorter queue into the 64-bit words in common data format, that may be used as payload in the event.
• The number of handled RPC, CSC and DT inputs is parametrized and may be easily changed.

The design may also be adjusted to possible changes in operating conditions of the experiment. For example, if the trigger rules are changed so that a single RBX may belong to three events simultaneously, the RBX record may be extended to contain four factors associating it with three consecutive L1As. Of course, this modification requires also adding the third output queue. The scalability of the design is limited by the resources available in the FPGA.