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Electronics Development – FPGA families

• The digital part of the electronics

operating at CERN is usually 

controlled by either microcontrollers, 

processors, FPGAs and PLCs.

• FPGAs are preferred as they allow=>

• high speeds of operation

• high capacity for logic designs

• numerous I/Os compatible with different protocols

• Three families of FPGAs:

• SRAM-based ± (TID, speed, size, cost)

• FLASH-based ± (configuration memory, speed, security)

• Anti-Fuse ± (configuration memory, TID, no-
reprogrammable)
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Candidate for various CERN applications

• We need a component that:

• Can withstand high TID levels (>1kGy)

• Does not lose its configuration memory (one time programmable)

• Is reprogrammable

• Can operate at high speeds (>100MHz)

• Has a high capacitance (LUTs, FFs, DSP etc)

• Does not latch

• Is cheap!

• In other words: the perfect FPGA!

• Mainly for low intensity radiation environments/non-critical

• FLASH-Based FPGAs have been used for a long time (and are still used) 
-> TID problems on several parts of the FPGA

• Xilinx FPGAs are sensitive mainly due to the SRAM-based configuration 
memory.

• What is the solution?
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Working around the CRAM problem

• The main drawback for SRAM-based FPGAs is the vulnerability of the configuration 
memory.

• Xilinx proposes a standalone solution to the problem: Soft Error Mitigation IP 
(SEM)

• SEM makes use of built-in primitives for the detection and correction of SEUs on the 
configuration memory

• It is a controller that brings together the ECC FRAME, the ICAP and provides an 
external interface.

• ECC/CRC error detection – error correction

• 13-bit Hamming code

• UART interface for status/error reporting

• SEM can correct two bit failures per frame from CRAM

• It cannot correct BRAM and Flip Flops

• Three options for correction:

• Single error correction – ECC

• Double error correction – ECC/CRC

• Correction by replace – External Storage
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Arty board

• Artix7 7-Series of Xilinx - xc7a35ticsg324

• 33,280 logic cells in 5200 slices (each slice contains four 6-input LUTs and 8 flip-flops)

• 1,800 Kbits of fast block RAM, 90 DSP slices, On-chip analog-to-digital converter (XADC).

• 14,953,046 bits approximately of CRAM

• Arty Board:

• Many peripherals interfaces:

• 16MB Quad-SPI Flash

• 10/100 Mbps Ethernet PHY

• and many others

• Why?

• Large enough to host Microblaze + custom design/IPs

• High TID endurance: according to the study of BYU up to 400krad (4kGy)

• Availability – reduced development cost/time

• Low cost development board

• Several peripherals to “play with” at the system level => very good vehicle to drive system level 
testing and qualification of this component (and why not the board itself!!!)
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Artix7 – How do we qualify it?

• Starting from the weakest link => CRAM

• SEM IP

• Comparison with readback method of XS

• Application level

• Simple applications (eg. Counter)

• More sophisticated (eg. FSMs)

• Full application (eg. μBlaze)

• System level

• Board level usage of peripherals (PHY, FLASH, 
power converter, ADC, memories etc)
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First Setup

• Simple design with the SEM IP operating with the monitoring interface provided by Xilinx 
(MonShim)

• Enhanced repair used (CRC/ECC)

• ICAP/ECC FRAME

• MONITOR SHIM (UART interface)

• A counter triggering a separate UART is our “application” pinging if the board is functional or not

• UART and counter are instantiated using the Distributed TMR directive of the Synplify Premier 
Synthesizer of Synopsis for Xilinx FPGAs. 

• Communication via USB repeater, and two UARTs.
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Irradiation at CHARM
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Cu_OOOO

CHARM Configuration :

Copper target without shielding

CHARM rates in position 0 :

HEH ≈ 105 HEH.s-1cm-2



First Results
• 1 week of irradiation

• 16 Gy total dose

• 1.6·1010 HEH total fluence (corresponding to the logs we recorded)

• During the runs, the UART/counter application never failed

• SEM IP Failure modes:

• Stuck at failures – the SEM keeps sending the same corrected bit

• Stuck at failures – the SEM keeps sending the same character

• No-Data from SEM IP – no response to the Status or the Reset 
command

• Corrupted data coming from the SEM UART interface (UART garbage)

• Same bit corrected twice in a row

• Configuration memory Cross Section: 2.34E-14cm2/bit

• Non Correctable Bit Cross Section: 2.71E-16cm2/bit
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Second Setup

• Upgrade of the SEM monitoring interface using our own custom monitoring module

• Triplicated FIFOs, simple UART module (dTMRed), simple UART operating FSMs (dTMRed)

• Sophisticated approach as a realistic case study concerning Finite State Machines (FSMs)

• Clusters of FSMs each one with a different sensitivity

• Each FSM uses one-hot encoding

• Three identical FSM types in terms of functionality (code), differentiating only the directives:

• none

• dTMR

• Hamming 3

• The syn_safe_case directive is used to keep the default state in case of an SEU

• 6 consecutive states in a cyclic path. Transitions occur with an enable signal (fed by a counter)

• Internal counter verifying the number of states that have been accessed.

• Error signal triggered in case of erroneous state, or mismatch between expected number of 
states (XOR between the bits of the state register)

• Copper Target with shielding
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Second Setup
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Second Results

• 1 week of irradiation

• 1.86E+09 HEH total fluence

• 1.6 Gy total dose

• Improvement of the SEM IP behavior

• Failure modes:

• No-Data from SEM IP interface

• Garbage from the UART/SEM-IP

• Same bit corrected twice in a row

• 5 no-TMR failures of the FSM. No reset was needed. Major 
failures involving large number of upsets.

• One Hamming 3 major failure requiring reset.

• Memory Configuration Cross Section: 6.67E-14 cm2/bit

• Non Correctable Bit Cross Section: 5.03E-16 cm2/bit

R. Ferraro, TWEPP 2016, Karlsruhe Germany



Ongoing and Future work

• This is just the beginning! Results are interesting but lots of things to be tested

• SEM IP with simple repair

• SEM IP with repair by replace (most promising)

• POST_CRC directive with repair and continue operation exploration

• Xilinx suggests to go directly with the SEM IP

• Readback Cross Section Calculation => waiting for the calibration!

• Microblaze setup using 10/100 Mb/s Ethernet link

• Preliminary results are not so encouraging

• FSM setups using simple structure without the directives of Synopsis:

• Experts form the field have pointed out that the do not prefer using such tools, but rather doing 
things by hand

• Harsh conditions testing: move towards a position inside CHARM with higher flux/dose

• Use applications to explore Mean Time Between Failure

• CERN applications: nanoFIP?

• Generic applications: AXI based architecture using the available peripherals of the board?
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Thank you for your time!

Questions?
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