On The Exploration of SRAM-based FPGAs

G. Tsiligiannis, R. Ferraro, S. Danzeca
Outline

- Electronics Development - FPGA families
- Candidate for different CERN applications
- CRAM Problem Workaround
- Artix7 – Arty board
- First setup
- First Results
- Second setup
- Second Results
- Next steps to consider
Electronics Development – FPGA families

- The digital part of the electronics operating at CERN is usually controlled by either microcontrollers, processors, FPGAs and PLCs.
- FPGAs are preferred as they allow:
 - high speeds of operation
 - high capacity for logic designs
 - numerous I/Os compatible with different protocols
- Three families of FPGAs:
 - SRAM-based ± (TID, speed, size, cost)
 - FLASH-based ± (configuration memory, speed, security)
 - Anti-Fuse ± (configuration memory, TID, non-reprogrammable)
Candidate for various CERN applications

- We need a component that:
 - Can withstand high TID levels (>1kGy)
 - Does not lose its configuration memory (one time programmable)
 - Is reprogrammable
 - Can operate at high speeds (>100MHz)
 - Has a high capacitance (LUTs, FFs, DSP etc)
 - Does not latch
 - Is cheap!
- In other words: **the perfect FPGA!**
- Mainly for low intensity radiation environments/non-critical
- FLASH-Based FPGAs have been used for a long time (and are still used) -> TID problems on several parts of the FPGA
- Xilinx FPGAs are sensitive mainly due to the SRAM-based configuration memory.
- What is the solution?
Working around the CRAM problem

- The main drawback for SRAM-based FPGAs is the vulnerability of the configuration memory.
- Xilinx proposes a standalone solution to the problem: **Soft Error Mitigation IP (SEM)**
- SEM makes use of built-in primitives for the detection and correction of SEUs on the configuration memory
- It is a controller that brings together the ECC FRAME, the ICAP and provides an external interface.
 - ECC/CRC error detection – error correction
 - 13-bit Hamming code
 - UART interface for status/error reporting
- SEM can correct two bit failures per frame from CRAM
 - It cannot correct BRAM and Flip Flops
- Three options for correction:
 - Single error correction – ECC
 - Double error correction – ECC/CRC
 - Correction by replace – External Storage
Arty board

- Artix7 7-Series of Xilinx - xc7a35ticsg324
 - 33,280 logic cells in 5200 slices (each slice contains four 6-input LUTs and 8 flip-flops)
 - 1,800 Kbits of fast block RAM, 90 DSP slices, On-chip analog-to-digital converter (XADC).
 - 14,953,046 bits approximately of CRAM
- Arty Board:
 - Many peripherals interfaces:
 - 16MB Quad-SPI Flash
 - 10/100 Mbps Ethernet PHY
 - and many others
- Why?
 - Large enough to host Microblaze + custom design/IPS
 - High TID endurance: according to the study of BYU up to 400 krad (4kGy)
 - Availability – reduced development cost/time
 - Low cost development board
 - Several peripherals to “play with” at the system level => very good vehicle to drive system level testing and qualification of this component (and why not the board itself!!)
Artix7 – How do we qualify it?

• Starting from the weakest link => CRAM
 • SEM IP
 • Comparison with readback method of XS
• Application level
 • Simple applications (eg. Counter)
 • More sophisticated (eg. FSMs)
 • Full application (eg. μBlaze)
• System level
 • Board level usage of peripherals (PHY, FLASH, power converter, ADC, memories etc)
First Setup

- Simple design with the SEM IP operating with the monitoring interface provided by Xilinx (MonShim)
 - Enhanced repair used (CRC/ECC)
 - ICAP/ECC FRAME
 - MONITOR SHIM (UART interface)
- A counter triggering a separate UART is our “application” pinging if the board is functional or not
- UART and counter are instantiated using the Distributed TMR directive of the Synplify Premier Synthesizer of Synopsis for Xilinx FPGAs.
 - Communication via USB repeater, and two UARTs.

![Diagram of Artix7 with ICAP, SEM Controller, Monitor SHIM, FRAME ECC, Counter dTMR, and UART dTMR]
Irradiation at CHARM

CHARM Configuration:
Copper target without shielding

CHARM rates in position 0:
HEH ≈ 10^5 HEH.s^{-1}cm^{-2}
First Results

- 1 week of irradiation
- 16 Gy total dose
- $1.6 \cdot 10^{10}$ HEH total fluence (corresponding to the logs we recorded)
- During the runs, the UART/counter application never failed
- SEM IP Failure modes:
 - **Stuck at failures** – the SEM keeps sending the same corrected bit
 - **Stuck at failures** – the SEM keeps sending the same character
 - **No-Data** from SEM IP – no response to the Status or the Reset command
 - **Corrupted data** coming from the SEM UART interface (UART garbage)
- Same bit corrected twice in a row
- Configuration memory Cross Section: $2.34 \cdot 10^{-14} \text{cm}^2/\text{bit}$
- Non Correctable Bit Cross Section: $2.71 \cdot 10^{-16} \text{cm}^2/\text{bit}$

R. Ferraro, TWEPP 2016, Karlsruhe Germany
Second Setup

- Upgrade of the SEM monitoring interface using our own custom monitoring module
 - Triplicated FIFOs, simple UART module (dTMRed), simple UART operating FSMs (dTMRed)
- Sophisticated approach as a realistic case study concerning Finite State Machines (FSMs)
- Clusters of FSMs each one with a different sensitivity
 - Each FSM uses one-hot encoding
 - Three identical FSM types in terms of functionality (code), differentiating only the directives:
 - none
 - dTMR
 - Hamming 3
 - The syn_safe_case directive is used to keep the default state in case of an SEU
 - 6 consecutive states in a cyclic path. Transitions occur with an enable signal (fed by a counter)
 - Internal counter verifying the number of states that have been accessed.
 - Error signal triggered in case of erroneous state, or mismatch between expected number of states (XOR between the bits of the state register)
- Copper Target with shielding
Second Setup
Second Results

- 1 week of irradiation
- \(1.86 \times 10^9\) HEH total fluence
- 1.6 Gy total dose
- Improvement of the SEM IP behavior
- Failure modes:
 - **No-Data** from SEM IP interface
 - **Garbage** from the UART/SEM-IP
- Same bit corrected twice in a row
- 5 no-TMR failures of the FSM. No reset was needed. Major failures involving large number of upsets.
- One Hamming 3 major failure requiring reset.
- Memory Configuration Cross Section: \(6.67 \times 10^{-14}\) cm\(^2\)/bit
- Non Correctable Bit Cross Section: \(5.03 \times 10^{-16}\) cm\(^2\)/bit
Ongoing and Future work

• This is just the beginning! Results are interesting but lots of things to be tested
• SEM IP with simple repair
• SEM IP with repair by replace (most promising)
• POST_CRC directive with repair and continue operation exploration
 - Xilinx suggests to go directly with the SEM IP
• Readback Cross Section Calculation => waiting for the calibration!
• Microblaze setup using 10/100 Mb/s Ethernet link
 - Preliminary results are not so encouraging
• FSM setups using simple structure without the directives of Synopsis:
 - Experts form the field have pointed out that they do not prefer using such tools, but rather doing things by hand
• Harsh conditions testing: move towards a position inside CHARM with higher flux/dose
• Use applications to explore Mean Time Between Failure
 - CERN applications: nanoFIP?
 - Generic applications: AXI based architecture using the available peripherals of the board?
Thank you for your time!

Questions?