

KATRIN – the most precise scale for neutrinos

ALLER AND AS

Topical Workshop on Electronics for Particle Physics (TWEPP-2016) KIT, September 26-30, 2016

Guido Drexlin, Institute for Experimental Nuclear Physics, Department of Physics

- Introduction: neutrinos in particle physics
- ß-spectroscopy and neutrino mass
- KATRIN: measurement principle & challenges
- KATRIN: main components
- KATRIN: status & future
- Conclusions

www.kit.edu

KATRIN experiment

Karlsruhe Tritium Neutrino Experiment

- direct v-mass experiment:
- international collaboration from 6 countries:

located at Tritium Laboratory (TLK) of KIT

~130 members

D, US, CZ, RUS, F, ES

 Karlsruhe Institute of Technology

KATRIN experiment – science case

physics programme

- model-independent effective electron (anti-)neutrino mass: $m(v_e) = 200 \text{ meV}$ (90% CL)
- search for light... heavy sterile neutrinos: sub-eV ... keV mass scale
- constrain local relic-v density, search for Lorentz violation, exotic currents, BSM physics ...

Introduction: neutrinos in particle physics

6.10.2015 – and the winners are:

III: N. Elmehed. © Nobel Media 2014

2015 Nobel Prize in Physics

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass".

Nobelprize.org
The Official Web Site of the Nebel Prize

The Official Web Site of the Nobel Prize

8.11.2015 – and the winners are:

FUNDAMENTAL PHYSICS BREAKTHROUGH PRIZE

"annus mirabilis" of neutrino physics

massless neutrinos in the Standard Model Karlsruhe Institute of Technology $\begin{pmatrix} v_e \\ e^- \end{pmatrix}_L \quad \begin{pmatrix} v_\mu \\ \mu^- \end{pmatrix}_L \quad \begin{pmatrix} v_\tau \\ \tau^- \end{pmatrix}_L \ - \text{ only LH } \mathbf{v}, \text{ RH anti-} \mathbf{v}$ (maximum parity violation) m(v) = 0 $\begin{pmatrix} u \\ d' \end{pmatrix}_{L}$ $\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$ $\begin{pmatrix} t \\ b' \end{pmatrix}_{L}$ $\begin{pmatrix} - \text{ massless fermions} \\ - \text{ carry Lepton number} \end{pmatrix}$ THE STANDARD MODEL 74: Brookhaven & SLAC 1979: DESY $mass [GeV] = 10^{3} Generation z_{V}$ fermions U zweite Generation bosons dritte Generation BB-SLAC 1047: Manchester University 1923: Washington Universi 1077 Fermilat Top Bottom S 0 Charm Down Myon Strange 10 Un 10⁻⁹ Elektron Tau 10-10 down quark strange quari 10-11 1983: CERN Elektron-Neutrino Myon-Neutrino Tau-Neutrino 1983: CERN SU(2) $U(1)_{Y}$ Photon e \mathcal{T} Gluon masselose Bosonen 7 Sept. 26, 2016 G. Drexlin – KATRIN **KIT-KCETA**

massive neutrinos: beyond the Standard Model

massive neutrinos: beyond the Standard Model

neutrino oscillations imply massive neutrinos

massive neutrinos imply novel particles / processes:

- Lepton number violation?
- new fundamental mass scale?
- extended Higgs sector?
- right handed (sterile) neutrinos?

ARE NEUTRINOS

THEIR OWN

open questions in neutrino physics

BEYOND

STANDARD

Karlsruhe Institute of Technology

MODEL

neutrino mass – what is the correct pattern?

hierachy – normal case: $m_1 < m_2 << m_3$, inverted case: $m_3 << m_{1,2}$

ß-spectroscopy and neutrino mass

neutrino mass: status and perspecives

ß-decay: kinematics

ß-decay: kinematics

neutrino mass manifests itself only close to endpoint at E₀, as neutrinos there are only "mildly relativistic" [E² = p²c² + (mc²)²]

KATRIN: measurement principle & challenges

MAC-E principle: high-intensity tritium ß-spectroscopy

Magnetic Adiabatic Collimation & Electrostatic Filter: scan high-intensity T2 source

MAC-E principle: high-resolution tritium ß-spectroscopy

MAC-E principle: high-resolution tritium ß-spectroscopy

MAC-E principle: integrated ß-spectrum close to E0

- MAC-E filter: count all ß-decay electrons with E > U₀ in focal plane detector
 - requires excellent source stability (and diagnostics), R&D on differential read-out ongoing

KATRIN overview: 70 m long beamline

KATRIN overview: challenges-II

Karlsruhe Institute of Technology

Project milestones 2015 - CPS

KIT-KCETA

Project milestones 2015 - WGTS

KATRIN: main components

 Rear Section: an indispensible tool for diagnostics of source & spectrometer
 angular selective photoelectron gun: spectrometer transmission & energy losses in source
 Rear Wall: definition of source potential, neutralization of cold WGTS tritium plasma, online monitoring of tritium ß-decay activity via X-rays (BIXS)

WGTS – source cryostat

IT

WGTS – source cryostat

complex tritium source cryostat: 16 m length, 27 t total weight, ~ 40.000 pieces

- 7 s.c. solenoids for adiabatic guiding of ß-decay electrons (3.6 5.6 T)
- 7 cryogenic fluids for tritium operation (BT: 30-120K) & liquid He bath for magnets (4 K)
- tritium beam tube @30K with stability and homogeneity of 0.1%
- extensive instrumentations: >800 sensors (B, T, p, level, flow, ...)

source-related challenges - overview

source challenges: injection & gas flow calculation

Karlsruhe Institute of Technology

differential pumping - DPS

- serial pumping with TMPs $\rightarrow 10^5$ reduction
- ion elimination with $E \times B \rightarrow 10^7$ reduction

DPS instrumentation for ions: FT-ICR (ion diagnostics) dipoles (ion elimination) ring electrode (ion blocking)

WGTS

cryogenic pumping - CPS

cryogenic pumping section CPS:

- 3K section with Ar-frost layer \rightarrow >10⁷ reduction of T2

CPS instrumentation:

- condensed ^{83m}Kr-source (calibration)
- forward beam monitor (ß-activity)

LFCS low-field fine-tuning

EMCS

earth field compensation

main spectrometer vessel

Ø = 12.7 m

a large Helmholtz coil system for fine-shaping of low-B-field region

inner electrode system (24.000 wires) mounting precision: 200 µm!

P-

Focal Plane Detector system

detector

Detection of transmitted electrons with **Si-PIN detector array**

- 148 pixels (A = 44 mm² each) with ~ 100 nm top deadlayer in 500 μ m wafer
- 12 rings, each consisting of 12 pixels each, central 4-pixel bullseye
- active scintillator µ-veto & passive (Pb, Cu) shielding, PAE: + 10 kV

position resolution over entire flux tube (radius, azimuth)

pincl

magn

IPE contributions to KATRIN

Karlsruhe Institute of Technology

Important contributions from IPE to KATRIN experiment

- electronics: read-out chain for 148 Si-pixels
- slow control, automatisation, data base (ADEI)
- HV stabilisation (post-regulation)
- FPGA-based DAQ system, data visualization

Applications					
AJAX Web Display CSV, 2	Export TDMS, ROOT, CSV, XLS,		T ivity	LabVIEW Connectivity	
ADEI Web Services					
ADEI – Advanced	Searc	ch Export		Plot	
Infrastructure	Data	Data Aggregation and Caching			
Data Filte			ltering, Quality checks		
Data Source Access Layer					
Relational Databases	ZEU ntral Data Acquis	JS sition and Control	Karls	KATRIN sruhe Tritium Neutrino	
Data Sources					

Amplication

- s.c. magnet safety system

KATRIN: status & future

spectrometer commissionng measurements 2013-15

over 12 months of continuous spectrometer measurements to verify:

- functionality of all components: UHV, HV, B-fields, SC, DAQ,...
- MAC-E filter characteristics via egun transmission studies
- refine background model & optimisation of bg-reduction methods

Main spectrometer: MAC-E characteristics

- **Main spectrometer** works as high-resolution MAC-filter:
 - sharp transmission function for 18.6 keV electrons from egun, HV precision on 10 mV scale

width still limited by finite egun emission energy spectrum

small

angular

spread

Radon-induced background

- main spectrometer background: no contributions observed from
 - µ-induced secondaries
 - environmental γ 's
- Background stems only from neutral, unstable atoms in UHV
- ²¹⁹Rn atoms emanate from large surface of NEG pumps (2 km strips)
 - eV...keV electrons from α -decay
 - correspnding bg-rate: ~0.5 cps
- countermeasure (factor 20):
 - 3 LN2-cooled Cu-baffles in front of NEG
 - cryotrap eliminates ²¹⁹Rn-propagation
 - remaining bg level: ~0.5 cps

²⁰⁶Pb-recoil induced H-Rydberg states

highly excited H-atoms (Rydberg states) produced by Pb-206 recoils

- long-term forced ventilation of spectrometer, 222 Rn α -decays results in 210 Pb implantation
- single ²⁰⁶Pb recoil ions generate large clouds of H-Rydberg states, which propagte in UHV
- small number of H*- atoms is ionized in UHV by thermal BBR from spectrometer
- isotropic generation of low-energy (<1 eV) electrons in active flux tube volume

KATRIN First Light: Alignment & Ion Systematics

 Ion systematics: low-energy pencil beam of deuterium ions to study ion blocking & ion removal via E×B drift

KATRIN future: tritium loops in Q1-Q2/2017

KATRIN - reference neutrino mass sensitivity

KATRIN reference *v***-mass sensitivity** for 3 'full beam' (5 calendar) years:

sensitivity $m(v_e) = 0.2 \text{ eV} (90\% \text{ CL})$

0.35 eV (5**σ**)

very moderate impact of enhanced background level due to shape analysis & specific coutermeasures:
 optimized scanning strategy
 range of spectral analysis
 reduced flux tube volume for bg-level of 2015 with 0.5 cps: m(v_e) = 0.24 eV (90%) CL expect further bg-reduction!

KATRIN: Upgrade plans to improve sensitivity for $m(v_e)$

KATRIN sensitivity of m(v_e) = 200 meV can be improved substantially to push for m(v_e) ~ 100 meV and below, on-going R&D for
 differential read-out (encouraging 1st measurements!) via ToF-technique & also other methods
 → aim: bg-free scanning of tritium spectrum
 novel source concepts (atomic tritium source,...)

novel source concepts

differential read-out: ToF, ...

THE A

KATRIN: Upgrade plans to hunt for keV-scale v's

B-decay shape modification by keV-mass sterile neutrinos with mass m_s TRISTAN: a novel Si-pixel detector array to cover entire tritium phase space

TRISTAN: hunting for keV-scale v's

19 hexagonal detector arrays: ~10⁴ pixels

- each detector array has 541 hexagonal pixels
- FWHM < 500 eV @ 20 keV,
- 1µs integration time
- dead layer ~ 10 nm
- capacitance < 0.1 pF

- total detector diameter ~ 20 cm

Karlsruhe Institute of Technology

TRISTAN: single detector array & prototyping Karlsruhe Institute of Technology hexagonal detector array - 541 hexagonal pixels, each with individual preamps & read-out, DC-coupled - pixel diamater: ~ 2 mm HLL prototype - Si thickness: 0.3-0.5 mm **IPE** read-out - Si wafer diameter ~ 60 mm

Conclusions & Outlook

experimental status:

- all source components on-site, smooth on-going commissioning phase
- spectrometer: excellent MAC-E filter characteristics, on-going mitigation plans against remaining bg-level

near future:

- "first light" measurements mid-October 2016
- final commissioning until mid-2017
- first tritium runs in Q3-2017:
 best limits on kev-scale sterile v's
 (~10⁻³ level and below)

mid-term future:

- few months of tritium runs: sub-eV result (end of 2017)
- Iong-term future:
 - upgrades for keV-scale sterile v's, push down to 100 meV...

