#### Invisibility Cloaking of Metal Contacts on Solar Cells and LEDs

Martin Wegener Karlsruhe Institute of Technology (KIT), Germany

KIT, September 26, 2016











Analytic solutions by transformation of boundaries H. Lamb, "Hydromechanics", Cambridge University Press (1879) D.Y. Lei et al., New J. Phys. 12, 093030 (2010)

Design by transformation of material parameters J.B. Pendry, D. Schurig, and D.R. Smith, Science 312, 1780 (2006) U. Leonhardt, Science 312, 1777 (2006)

**Martin Wegener** 

Design by transformation of surfaces M. Schumann et al., Optica 2, 850 (2015)







H C> C0 B => fice-space + macroscopic + broadband y velativity

precisely, the size-bandwidth product is finite

| electromagnetism                                                     | mechanics                                                             | thermodynamics                                                    |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|
| electrostatics                                                       | fluid mechanics                                                       | particle diffusion                                                |
| $\vec{\nabla} \cdot \left( \epsilon \ \vec{\nabla} \phi \right) = 0$ | $\vec{\nabla} \cdot \left( \rho  \vec{\nabla} \Phi \right) = 0$       | $\vec{\nabla} \cdot \left( D \ \vec{\nabla} n \right) = 0$        |
| magnetostatics                                                       | linear elasticity                                                     | heat conduction                                                   |
| $\vec{\nabla}\cdot\left(\mu\vec{\nabla}\varphi\right)=0$             | $\vec{\nabla} \cdot \left( \vec{C}  \vec{\nabla} \vec{u} \right) = 0$ | $\vec{\nabla} \cdot \left( \kappa  \vec{\nabla} T \right) = 0$    |
|                                                                      | Schrödinger eq.                                                       | electric conduction                                               |
|                                                                      | $\vec{\nabla} \cdot \left( m^{-1} \vec{\nabla} \psi \right) = 0$      | $\vec{\nabla} \cdot \left( \sigma  \vec{\nabla} \phi \right) = 0$ |

all from conservation laws; stationary case, locally isotropic media, E=0 in Schrödinger eq.

#### **Performing a general 3D coordinate transformation**

$$x_i \rightarrow x'_i = x'_i(x_1, x_2, x_3); \ i = 1, 2, 3$$

$$ec{
abla} \cdot \left(\epsilon \ ec{
abla} \phi 
ight) = 0$$

#### leads to a new material distribution via the Jacobian





M. Kadic et al., Rep. Prog. Phys. 76, 126501 (2013)

- Mechanics and Thermodynamics
- Cloaked Contacts on OLEDs
- Cloaked Contacts on Solar Cells
- Conclusion

- Mechanics and Thermodynamics
- Cloaked Contacts on OLEDs
- Cloaked Contacts on Solar Cells
- Conclusion

| electromagnetism                                                     | mechanics                                                             | thermodynamics                                                      |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|
| electrostatics                                                       | fluid mechanics                                                       | particle diffusion                                                  |
| $\vec{\nabla} \cdot \left( \epsilon \ \vec{\nabla} \phi \right) = 0$ | $\vec{\nabla} \cdot \left( \rho  \vec{\nabla} \Phi \right) = 0$       | $\vec{\nabla} \cdot \left( \mathbf{D} \ \vec{\nabla} n \right) = 0$ |
| magnetostatics                                                       | linear elasticity                                                     | heat conduction                                                     |
| $\vec{\nabla}\cdot\left(\mu\ \vec{\nabla}\varphi\right)=0$           | $\vec{\nabla} \cdot \left( \vec{C}  \vec{\nabla} \vec{u} \right) = 0$ | $\vec{\nabla} \cdot \left( \kappa \ \vec{\nabla} T \right) = 0$     |
|                                                                      | Schrödinger eq.                                                       | electric conduction                                                 |
|                                                                      | $\vec{\nabla} \cdot \left( m^{-1} \vec{\nabla} \psi \right) = 0$      | $\vec{\nabla} \cdot \left( \sigma  \vec{\nabla} \phi \right) = 0$   |

all from conservation laws; stationary case, locally isotropic media, E=0 in Schrödinger eq.



#### plate thickness h = 1 mm

## **Measured Movies**



N. Stenger et al., Phys. Rev. Lett. 108, 014301 (2012)

| electromagnetism                                                    | mechanics                                                             | thermodynamics                                                    |
|---------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|
| electrostatics                                                      | fluid mechanics                                                       | particle diffusion                                                |
| $\vec{\nabla} \cdot \left( \epsilon \ \vec{\nabla} \phi  ight) = 0$ | $\vec{\nabla} \cdot \left( \rho  \vec{\nabla} \Phi \right) = 0$       | $\vec{\nabla} \cdot \left( D \; \vec{\nabla} n \right) = 0$       |
| magnetostatics                                                      | linear elasticity                                                     | heat conduction                                                   |
| $\vec{ abla} \cdot \left( \mu \ \vec{ abla} \varphi  ight) = 0$     | $\vec{\nabla} \cdot \left( \vec{C}  \vec{\nabla} \vec{u} \right) = 0$ | $\vec{\nabla} \cdot \left( \kappa \ \vec{\nabla} T \right) = 0$   |
|                                                                     | Schrödinger eq.                                                       | electric conduction                                               |
|                                                                     | $\vec{\nabla} \cdot \left( m^{-1} \vec{\nabla} \psi \right) = 0$      | $\vec{\nabla} \cdot \left( \sigma  \vec{\nabla} \phi \right) = 0$ |

all from conservation laws; stationary case, locally isotropic media, E=0 in Schrödinger eq.

# **Thermal Cloaking**



R. Schittny et al., Phys. Rev. Lett. 110, 195901 (2013)

- Mechanics and Thermodynamics
- Cloaked Contacts on OLEDs
- Cloaked Contacts on Solar Cells
- Conclusion

| electromagnetism                                             | mechanics                                                             | thermodynamics                                                    |
|--------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|
| electrostatics                                               | fluid mechanics                                                       | particle diffusion                                                |
| $ec{ abla} \cdot \left( \epsilon  ec{ abla} \phi  ight) = 0$ | $\vec{\nabla} \cdot \left( \rho  \vec{\nabla} \Phi \right) = 0$       | $\vec{\nabla} \cdot \left( D \; \vec{\nabla} n \right) = 0$       |
| magnetostatics                                               | linear elasticity                                                     | heat conduction                                                   |
| $\vec{\nabla}\cdot\left(\mu\ \vec{\nabla}\varphi\right)=0$   | $\vec{\nabla} \cdot \left( \vec{C}  \vec{\nabla} \vec{u} \right) = 0$ | $\vec{\nabla} \cdot \left( \kappa \ \vec{\nabla} T \right) = 0$   |
|                                                              | Schrödinger eq.                                                       | electric conduction                                               |
|                                                              | $\vec{\nabla} \cdot \left( m^{-1} \vec{\nabla} \psi \right) = 0$      | $\vec{\nabla} \cdot \left( \sigma  \vec{\nabla} \phi \right) = 0$ |

all from conservation laws; stationary case, locally isotropic media, E=0 in Schrödinger eq.

# **Diffusion of Light**



Martin Wegener

### Multiple Layers $\rightarrow$ Two Layers



E.H. Kerner, Proc. Phys. Soc. B 69, 802 (1956)

### **Invisible for Diffuse Light**



R. Schittny et al., Science 345, 427 (2014)

## **Experimental Setup**



 $L = 6.0 \,\mathrm{cm}, \, 2R_1 = 3.2 \,\mathrm{cm}, \, 2R_2 = 4.0 \,\mathrm{cm}$ 







# Application?

**Martin Wegener** 





Recipe



 Ceramic Accaflect® B6 [1] for core, @ L=3mm: > 99% Lambertian diffusive reflectance for wavelengths > 650 nm
 Polydimethylsiloxan (PDMS) doped with high-quality TiO<sub>2</sub> nanoparticles [2]

for shell and surrounding, 125 nm radius

3. To reduce doping concentrations, hence increase transmittance, use  $R_2/R_1=1.5$ 

[1] Accuratus Corporation (USA); [2] DuPont R700 (Germany), thanks to Georg Maret's group

# Samples



 $L_x = 15 \text{ cm}, L_y = 8 \text{ cm}, L_z = 3 \text{ cm}, R_1 = 0.8 \text{ cm}, R_2 = 1.2 \text{ cm}$ 







# Application?

**Martin Wegener** 

OSRAM Orbeos OLED module

مسالل

### **OLED Wallpaper**



F. Mayer et al., Adv. Opt. Mater. 4, 740 (2016)

- Mechanics and Thermodynamics
- Cloaked Contacts on OLEDs
- Cloaked Contacts on Solar Cells
- Conclusion

#### **Invisible Contacts?**



SITEC GmbH, centrotherm website; J.C. Halimeh et al., Opt. Express 21, 9457 (2013)

#### **Invisible Contacts**



M. Schumann et al., Optica 2, 850 (2015)

# **3D Laser Lithography**



scheme not to scale, actual NA = 1.4, Tolga Ergin

# **3D Carpet Cloak**



### **Experimental Results**



# Transformed Surfaces

**Martin Wegener** 

For normal incidence of rays, a region of width  $2R_1$  can be avoided using the 1D transformation



analogous to Pendry's transformation of a point to a circle/sphere; timing is ignored

### **Electron Micrograph**

20 µm

y(x)

made in shell-writing mode; Martin F. Schumann

## **Optical Characterization**



 $\lambda = 1.3 \mu m$  wavelength, normal incidence

# **Oblique Incidence?**

**Martin Wegener** 

# **Ray Tracing**



M.F. Schumann et al., Optica 2, 850 (2015)

# **Ray Tracing**



**M.F.** Schumann et al., Optica 2, 850 (2015)

#### Contacts are Invisible



imprinted via master on high-end Si solar cell (FZ Jülich), photograph in cleanroom, 2016

- Mechanics and Thermodynamics
- Cloaked Contacts on OLEDs
- Cloaked Contacts on Solar Cells
- Conclusion



Science 2010, PRL 2011, Optica 2015



PRL 2012, Rep. Prog. Phys. 2013, PNAS 2015



