LHC vs. Precision Experiments

A Comparison of LFV D6 Operators QQLL

Michael A. Schmidt 28 Sep 2016 @ FLASY

The University of Sydney

based on

Yi Cai, MS JHEP 02 (2016) 176 [1510.02486]

The Standard Model is very successful...

... but incomplete In particular neutrinos are massive

Lepton flavour is not conserved \rightarrow Flavour changing processes are a sensitive pro

The Standard Model is very successful...

... but incomplete In particular neutrinos are massive

Lepton flavour is not conserved \rightarrow Flavour changing processes are a sensitive probe

The Standard Model is very successful...

... but incomplete In particular neutrinos are massive

Lepton flavour is not conserved

 \rightarrow Flavour changing processes are a sensitive probe

Motivation

Can the LHC compete with precision experiments? 2

Motivation

Can the LHC compete with precision experiments? 2

Operators in SM EFT

D6 Operators with 2 Quarks and 2 Leptons

Buchmüller, Wyler NPB268(1986)621; Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

Scalar

$$\mathcal{Q}_{\mathit{ledq}} = (ar{L}^lpha \ell) (ar{d} Q^lpha)$$

$$\mathcal{Q}^{(1)}_{\mathit{lequ}} = (ar{L}^lpha \ell) \epsilon_{lpha eta} (ar{Q}^eta u)$$

Vector

$$\begin{aligned} \mathcal{Q}_{lq}^{(1)} &= (\bar{L}\gamma_{\mu}L)(\bar{Q}\gamma^{\mu}Q) \\ \mathcal{Q}_{eu} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) \\ \mathcal{Q}_{lu} &= (\bar{L}\gamma_{\mu}L)(\bar{u}\gamma^{\mu}u) \\ \mathcal{Q}_{qe} &= (\bar{Q}\gamma_{\mu}Q)(\bar{\ell}\gamma^{\mu}\ell) \end{aligned}$$

$$egin{aligned} \mathcal{Q}_{lq}^{(3)} &= (ar{L}\gamma_\mu au^I L) (ar{Q}\gamma^\mu au^I Q) \ \mathcal{Q}_{ed} &= (ar{\ell}\gamma_\mu \ell) (ar{d}\gamma^\mu d) \ \mathcal{Q}_{ld} &= (ar{L}\gamma_\mu L) (ar{d}\gamma^\mu d) \end{aligned}$$

Tensor

$$\mathcal{Q}_{lequ}^{(3)} = (\bar{L}^{\alpha}\sigma_{\mu\nu}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}u)$$

D6 Operators with 2 Quarks and 2 Leptons

Buchmüller, Wyler NPB268(1986)621; Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

Scalar with same-flavour quark

$$\mathcal{Q}_{\mathit{ledq}} = (\bar{L}^{lpha}\ell)(\bar{d}Q^{lpha})$$

$$\mathcal{Q}^{(1)}_{\mathit{lequ}} = (ar{L}^lpha \ell) \epsilon_{lpha eta} (ar{Q}^eta u)$$

Vector_{e.g.} Carpentier, Davidson 1008.0280; Petrov, Zhuridov 1308.6561

$$\begin{aligned} \mathcal{Q}_{lq}^{(1)} &= (\bar{L}\gamma_{\mu}L)(\bar{Q}\gamma^{\mu}Q) \qquad \mathcal{Q}_{lq}^{(3)} &= (\bar{L}\gamma_{\mu}\tau^{I}L)(\bar{Q}\gamma^{\mu}\tau^{I}Q) \\ \mathcal{Q}_{eu} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) \qquad \mathcal{Q}_{ed} &= (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{lu} &= (\bar{L}\gamma_{\mu}L)(\bar{u}\gamma^{\mu}u) \qquad \mathcal{Q}_{ld} &= (\bar{L}\gamma_{\mu}L)(\bar{d}\gamma^{\mu}d) \\ \mathcal{Q}_{qe} &= (\bar{Q}\gamma_{\mu}Q)(\bar{\ell}\gamma^{\mu}\ell) \end{aligned}$$

Tensor

$$\mathcal{Q}_{lequ}^{(3)} = (\bar{L}^{\alpha}\sigma_{\mu\nu}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}\sigma^{\mu\nu}u)$$

$$Q_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
 $Q_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$

Relevant Wilson coefficients $\Xi^{u,d}$ of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left(\mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left(\mathcal{Q}_{lequ}^{(1)} \right)_{ij,kk} + \text{h.c.} .$$

Effective four fermion Lagrangian

$$\begin{aligned} \mathcal{L}_{4f} &= \Xi_{ij,kl}^{Cd} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Rk} u_{Ll}) + \Xi_{ij,kl}^{Nd} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{d}_{Rk} d_{Ll}) \\ &+ \Xi_{ij,kl}^{Cu} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Lk} u_{Rl}) + \Xi_{ij,kl}^{Nu} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{u}_{Lk} u_{Rl}) . \end{aligned}$$

Scalar Operators

$$Q_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
 $Q_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$

Relevant Wilson coefficients $\Xi^{u,d}$ of SM EFT

$$-\mathcal{L} = \Xi^{d}_{ij,kk} \left(\mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi^{u}_{ij,kk} \left(\mathcal{Q}^{(1)}_{lequ} \right)_{ij,kk} + \text{h.c.} \ .$$

Effective four fermion Lagrangian

$$\begin{aligned} \mathcal{L}_{4f} &= \Xi_{ij,kl}^{Cd} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Rk} u_{Ll}) + \Xi_{ij,kl}^{Nd} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{d}_{Rk} d_{Ll}) \\ &+ \Xi_{ij,kl}^{Cu} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Lk} u_{Rl}) + \Xi_{ij,kl}^{Nu} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{u}_{Lk} u_{Rl}) \;. \end{aligned}$$

Thus the most general four fermion coefficients are

$$\begin{split} \Xi_{ij,kl}^{Nd} &= U_{ii'}^{\ell*} \, V_{lk}^{d} \, \Xi_{ij,kk}^{d} & \qquad \Xi_{ij,kl}^{Cd} &= U_{ii'}^{\nu*} \, V_{lk}^{u} \, \Xi_{i'j,kk}^{d} \\ \Xi_{ij,kl}^{Nu} &= -U_{ii'}^{\ell*} \, V_{kl}^{u*} \, \Xi_{ij,ll}^{u} & \qquad \Xi_{ij,kl}^{Cu} &= U_{ii'}^{\nu*} \, V_{kl}^{d*} \, \Xi_{i'j,ll}^{u} \end{split}$$

In general there is quark flavour violation.

Scalar Operators

$$Q_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
 $Q_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$

Relevant Wilson coefficients $\Xi^{u,d}$ of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left(\mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left(\mathcal{Q}_{lequ}^{(1)} \right)_{ij,kk} + \text{h.c.} .$$

Effective four fermion Lagrangian

$$\begin{aligned} \mathcal{L}_{4f} &= \Xi_{ij,kl}^{Cd} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Rk} u_{Ll}) + \Xi_{ij,kl}^{Nd} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{d}_{Rk} d_{Ll}) \\ &+ \Xi_{ij,kl}^{Cu} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Lk} u_{Rl}) + \Xi_{ij,kl}^{Nu} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{u}_{Lk} u_{Rl}) \;. \end{aligned}$$

Choose basis in which charged lepton mass matrix is diagonal as well as $\Xi_{ii\ kk}^{N?}$

$$\Xi_{ij,kl}^{Nd} = \delta_{kl} \Xi_{ij,kk}^{d} \qquad \qquad \Xi_{ij,kl}^{Cd} = U_{ii'}^* V_{kl}^* \Xi_{i'j,kk}^{d} \\ \Xi_{ij,kl}^{Nu} = -\delta_{kl} \Xi_{ij,kk}^{u} \qquad \qquad \Xi_{ij,kl}^{Cu} = U_{ii'}^* V_{kl}^* \Xi_{i'j,ll}^{u}$$

 \Rightarrow No tree-level FCNC processes.

Scalar Operators

$$Q_{ledq} = (\bar{L}^{\alpha}\ell)(\bar{d}Q^{\alpha})$$
 $Q_{lequ}^{(1)} = (\bar{L}^{\alpha}\ell)\epsilon_{\alpha\beta}(\bar{Q}^{\beta}u)$

Relevant Wilson coefficients $\Xi^{u,d}$ of SM EFT

$$-\mathcal{L} = \Xi_{ij,kk}^{d} \left(\mathcal{Q}_{ledq} \right)_{ij,kk} + \Xi_{ij,kk}^{u} \left(\mathcal{Q}_{lequ}^{(1)} \right)_{ij,kk} + \text{h.c.} .$$

Effective four fermion Lagrangian

$$\begin{aligned} \mathcal{L}_{4f} &= \Xi_{ij,kl}^{Cd} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Rk} u_{Ll}) + \Xi_{ij,kl}^{Nd} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{d}_{Rk} d_{Ll}) \\ &+ \Xi_{ij,kl}^{Cu} (\bar{\nu}_{Li} \ell_{Rj}) (\bar{d}_{Lk} u_{Rl}) + \Xi_{ij,kl}^{Nu} (\bar{\ell}_{Li} \ell_{Rj}) (\bar{u}_{Lk} u_{Rl}) \;. \end{aligned}$$

Choose basis in which charged lepton mass matrix is diagonal as well as $\Xi_{ii\ kk}^{N?}$

$$\Xi_{ij,kl}^{Nd} = \delta_{kl} \Xi_{ij,kk}^{d} \qquad \qquad \Xi_{ij,kl}^{Cd} = U_{ii'}^* V_{kl}^* \Xi_{i'j,kk}^{d} \\ \Xi_{ij,kl}^{Nu} = -\delta_{kl} \Xi_{ij,kk}^{u} \qquad \qquad \Xi_{ij,kl}^{Cu} = U_{ii'}^* V_{kl}^* \Xi_{i'j,ll}^{u}$$

\Rightarrow No tree-level FCNC processes.

Renormalization Group Corrections

• Following the standard discussion at NLO

Buchalla, Buras, Lautenbacher hep-ph/9512380

$$\Xi(\mu) = \Xi(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\frac{20}{2\beta_0}}$$

with coefficients

$$\beta_0 = 11 - 2n_F/3$$
 and $\gamma_0 = 6C_2(3) = 8$

Wilson coefficients become larger at smaller scales.
 Increases reach of precision experiments

Renormalization Group Corrections

• Following the standard discussion at NLO

Buchalla, Buras, Lautenbacher hep-ph/9512380

$$\Xi(\mu) = \Xi(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\frac{\gamma_0}{2\beta_0}}$$

with coefficients

$$\beta_0 = 11 - 2n_F/3$$
 and $\gamma_0 = 6C_2(3) = 8$

- Wilson coefficients become larger at smaller scales.
- \Rightarrow Increases reach of precision experiments

Precision Experiments

Precision Experiments

 $\mu - e$ conversion in nuclei

$\mu - e$ Conversion

- Agnostic about mediation mechanism
- Following discussion in

Gonzalez, Gutsche, Helo, Kovalenko, Lyubovitskij, Schmidt 1303.0596

Dimensionless $\mu - e$ conversion rate

$$R_{\mu e}^{(A,Z)} \equiv rac{\Gamma(\mu^- + (A,Z) o e^- + (A,Z))}{\Gamma(\mu^- + (A,Z) o
u_\mu + (A,Z-1))}$$

with muon conversion rate

$$\Gamma(\mu^{-}+(A,Z)\to e^{-}+(A,Z)) = \left|\Xi_{ij,kl}^{Nu,Nd}\right|^{2} \times \mathcal{F} \times \frac{p_{e}E_{e}\left(\mathcal{M}_{p}+\mathcal{M}_{n}\right)^{2}}{2\pi}$$

 \mathcal{F} depends on mediation mechanism No dependence on phase of Ξ if there is only one operator. Strongest limit for first generation quarks, but non-negligible for other quarks if pure direct nuclear mediation

$\mu - e$ Conversion

- Agnostic about mediation mechanism
- Following discussion in

	⁴⁸ Ti	¹⁹⁷ Au	²⁰⁸ Pb
$R_{\mu e}^{\max}$	4.3×10^{-11}	7.0×10^{-13}	4.6×10^{-11}
ūu	1100 [870]	2100 [1700]	760 [610]
đd	1100 [930]	2200 [1900]	780 [680]
<u></u> 55	480 [-]	950 [-]	340 [-]
īс	150 [-]	290 [-]	110 [-]
Бb	84 [-]	170 [-]	61 [-]

Direct nuclear mediation [Meson mediation]

Strongest limit for first generation quarks, but non-negligible for other quarks if pure direct nuclear mediation

$\mu - e$ Conversion

- Agnostic about mediation mechanism
- Following discussion in

	⁴⁸ Ti	¹⁹⁷ Au	²⁰⁸ Pb
$R_{\mu e}^{\max}$	4.3×10^{-11}	7.0×10^{-13}	4.6×10^{-11}
นิน	1100 [870]	2100 [1700]	760 [610]
đd	1100 [930]	2200 [1900]	780 [680]
<u></u> 55	480 [-]	950 [-]	340 [-]
īс	150 [-]	290 [-]	110 [-]
Бb	84 [-]	170 [-]	61 [-]

Direct nuclear mediation [Meson mediation]

Strongest limit for first generation quarks,

but non-negligible for other quarks if pure direct nuclear mediation

LFV Semileptonic τ Decays

- Only light quarks u,d,s
- Weak dependence on phase
- $f_0: \varphi_m$ parameterises quark content
- Quark FCNC parameterised by λ

$$\Xi_{ij,kl}^{u} = \lambda \Xi_{ij,ll}^{u} V_{kl} \quad \Xi_{ij,kl}^{d} = \lambda \Xi_{ij,kk}^{d} V_{kl}$$

decay	Br_i^{\max}	cutoff scale Λ [TeV]		
		$\equiv^{u}_{ij,uu}$	$\equiv^d_{ij,dd}$	$\equiv^{d}_{ij,ss}$
$\tau^- ightarrow e^- \pi^0$	$8.0 imes10^{-8}$	10	10	-
$\tau^- \to {\rm e}^- \eta$	$9.2 imes10^{-8}$	34	34	7.9
$\tau^- ightarrow {\rm e}^- \eta^\prime$	$1.6 imes10^{-7}$	42	42	12
$ au^- ightarrow e^- K^0_S$	$2.6 imes10^{-8}$	-	$7.8\sqrt{\lambda}$	$7.8\sqrt{\lambda}$
$ au^- ightarrow e^-(f_0(980) ightarrow \pi^+\pi^-)$	$3.2 imes10^{-8}$	$13\sqrt{\sin \varphi_m}$	$13\sqrt{\sin \varphi_m}$	$16\sqrt{\cos \varphi_m}$
$\tau^- \to \mu^- \pi^0$	$1.1 imes 10^{-7}$	9.0 - 9.6	9.0 - 9.6	-
$\tau^- \to \mu^- \eta$	$6.5 imes10^{-8}$	36 - 38	36 - 38	8.4 - 8.9
$\tau^- ightarrow \mu^- \eta^\prime$	$1.3 imes10^{-7}$	42 - 46	42 - 46	12 - 13
$\tau^- ightarrow \mu^- K_S^0$	$2.3 imes10^{-8}$	-	$\left(7.8-8.3 ight)\sqrt{\lambda}$	$\left(7.8-8.3 ight)\sqrt{\lambda}$
$\tau^- \to \mu^-(f_0(980) \to \pi^+\pi^-)$	$3.4 imes10^{-8}$	$(12-14)\sqrt{\sin arphi_m}$	$(12-14)\sqrt{\sin arphi_m}$	$(15-16)\sqrt{\cos arphi_m}$

Leptonic Neutral Meson Decays $M^0 \rightarrow \ell_i^+ \ell_i^-$

Quark FCNC parameterised by λ

$$\Xi^{u}_{ij,kl} = \lambda \Xi^{u}_{ij,ll} V_{kl} \qquad \Xi^{d}_{ij,kl} = \lambda \Xi^{d}_{ij,kk} V_{kl}$$

For $\lambda={\rm 0}$ only constraints from $\pi^{\rm 0},\eta^{(\prime)}$ decays

							ℓ_i^-
decay	Br_i^{max}		cutof	f scale Λ	[TeV]		J
		$\equiv^u_{ij,uu}$	$\equiv^d_{ij,dd}$	$\Xi^d_{ij,ss}$	$\equiv^u_{ij,cc}$	$\equiv^d_{ij,bb}$	
$\pi^0 ightarrow \mu^+ e^-$	3.8×10^{-10}	2.2	2.2	-	-	-	
$\pi^0 ightarrow \mu^- e^+$	$3.4 imes10^{-9}$	1.2	1.2	-	-	-	
$\pi^0 \to \mu^+ e^- + \mu^- e^+$	$3.6 imes10^{-10}$	2.6	2.6	-	-	-	
$\eta ightarrow \mu^+ e^- + \mu^- e^+$	$6 imes 10^{-6}$	0.52	0.52	0.12	-	-	
$\eta' ightarrow e \mu$	$4.7 imes10^{-4}$	0.091	0.091	0.026	-	-	
${\cal K}^0_L o e^\pm \mu^\mp$	4.7×10^{-12}	-	86 $\sqrt{\lambda}$	$86\sqrt{\lambda}$	-	-	
$D^0 o e^\pm \mu^\mp$	$2.6 imes10^{-7}$	$6.4\sqrt{\lambda}$	-	-	$6.4\sqrt{\lambda}$	-	
$B^0 o e^\pm \mu^\mp$	$2.8 imes10^{-9}$	-	$10\sqrt{\lambda}$	-	-	6.6 $\sqrt{\lambda}$	
$B^0 o e^\pm au^\mp$	$2.8 imes10^{-5}$	-	$0.97\sqrt{\lambda}$	-	-	$0.62\sqrt{\lambda}$	
$B^0 o \mu^{\pm} \tau^{\mp}$	$2.2 imes 10^{-2}$	-	$0.18\sqrt{\lambda}$	-	-	$0.12\sqrt{\lambda}$	

 M^0

 ℓ_i^+

Leptonic Charged Meson Decays $M^+ \rightarrow \ell_i^+ \nu$

- $R_M = \frac{\operatorname{Br}(M^+ \to e^+ \nu)}{\operatorname{Br}(M^+ \to \mu^+ \nu)}$
- Theoretical error for R_{π} (R_{K}) about 5%
- Improvement by factor 20 (2) possible
- 🕜 indicates constraints
- Second index of Λ corresponds to charged lepton

decay	constraint	cutoff scale Λ [TeV]			Wilson coefficients		cients	
		$\Lambda_{\mu e, e\mu, e\tau}$	$\Lambda_{ au e, au \mu, \mu au}$	$\Xi^u_{ij,uu}$	$\Xi^d_{ij,dd}$	$\Xi^d_{ij,ss}$	$\Xi^u_{ij,cc}$	$\Xi^d_{ij,bb}$
R_{π}	$R_{\pi}^{exp} \pm 5\%$	25 - 280	25 - 260			-	-	-
R _K	$R_K^{ m exp}\pm5\%$	24 - 160	24 - 150	\checkmark	-		-	-
${\sf Br}(D^+ o e^+ u)$	$< 8.8 imes 10^{-6}$	2.8 - 2.9	2.9	-	\checkmark	-	\checkmark	-
${\sf Br}(D^+_s o e^+ u)$	$< 8.3 imes 10^{-5}$	3.2 - 3.3	3.2 - 3.3	-	-	\checkmark		-
${\rm Br}(B^+ o e^+ u)$	$< 9.8 imes 10^{-7}$	2.0	2.0	\checkmark	-	-	-	(
$Br(\pi^+ o \mu^+ \nu)$	$Br^{exp}\pm5\%$	1.9 - 7.4	1.9 - 9.4	(-	-	-
$Br(K^+ \rightarrow \mu^+ \nu)$	${\sf Br}^{\sf exp}\pm5\%$	1.7 - 5.8	1.7 - 7.4	\checkmark	-		-	-
${\sf Br}(D^+ o \mu^+ u)$	$(3.82 \pm 0.33) imes 10^{-4}$	1.1 - 2.7	1.1 - 3.4	-	\checkmark	-	\checkmark	-
${\rm Br}(D_s^+ o \mu^+ \nu)$	$(5.56 \pm 0.25) imes 10^{-3}$	1.3 - 4.3	1.3 - 5.3	-	-	\checkmark		-
${\rm Br}(B^+ o \mu^+ \nu)$	$<1.0\times10^{-6}$	1.9 - 2.7	1.7 - 3.0	\checkmark	-	-	-	(
$Br(D^+ \rightarrow \tau^+ \nu)$	$<1.2\times10^{-3}$	0.21 - 0.78	0.23 - 0.73	-	Ø	-	\checkmark	-
$Br(D_s^+ \rightarrow \tau^+ \nu)$	$(5.54 \pm 0.24) imes 10^{-2}$	0.33 - 1.2	0.33 - 1.1	-	-	((-
$Br(B^+ \rightarrow \tau^+ \nu)$	$(1.14\pm 0.27)\times 10^{-4}$	0.49 - 1.3	0.49 - 1.2	V	-	-	-	(

10

Large Hadron Collider

LFV at the Large Hadron Collider (LHC)

Signal: opposite-sign different flavour pair of leptons Several existing searches:

- ATLAS 7 TeV: LFV heavy neutral particle decay to $e\mu$ ATLAS 1103.5559
- CMS 8 TeV: LFV heavy neutral particle decay to $e\mu$ cms-pas-exo-13-002
- ATLAS 7 TeV: LFV in eµ continuum in *R* SUSY_{ATLAS 1205.0725}
- ATLAS 8 TeV: LFV heavy neutral particle decayATLAS 1503.04430
- CMS 8 TeV: LFV heavy neutral particle decay to $e\mu$ cms 1604.05239
- ATLAS 13 TeV: LFV heavy neutral particle decay ATLAS 1607.08079

Invariant Mass Distribution of $e\mu$ Pair for Different Quarks

Production cross section normalised to same value for each quark.

- Sea quarks s, c, b peaked at low invariant mass
- Valence quarks *u*, *d* shifted towards larger invariant mass

This Study

Recast limits of most sensitive previous searches

ATLAS 1503.04430	ATLAS 1205.0725
8 TeV	7 TeV
$20.3~{\rm fb}^{-1}$	$2.1~{\rm fb}^{-1}$
e μ , e $ au$, μau	$e\mu$
inclusive	exclusive
including arbitrary number of jets	separated by number of jets

Projection to 14 TeV

• Assuming 300 fb^{-1}

• Follow searching strategy of exclusive 7 TeV search

This Study

Recast limits of most sensitive previous searches

ATLAS 1503.04430	ATLAS 1205.0725
8 TeV	7 TeV
$20.3~{\rm fb}^{-1}$	$2.1~{\rm fb}^{-1}$
e μ , e $ au$, μau	$e\mu$
inclusive	exclusive
including arbitrary number of jets	separated by number of jets

Projection to 14 TeV

• Assuming 300 fb⁻¹

• Follow searching strategy of exclusive 7 TeV search

This Study

Recast limits of most sensitive previous searches

ATLAS 1503.04430	ATLAS 1205.0725
8 TeV	7 TeV
$20.3~{\rm fb}^{-1}$	$2.1~{\rm fb}^{-1}$
e μ , e $ au$, μau	$e\mu$
inclusive	exclusive
including arbitrary number of jets	separated by number of jets

Projection to 14 TeV

- Assuming 300 $\rm fb^{-1}$
- Follow searching strategy of exclusive 7 TeV search

ATLAS Searches

ATLAS 7TeV 1205.0725

ATLAS 8TeV 1503.04430

SM Background

ATLAS 7TeV 1205.0725

ATLAS 8TeV 1503 04430

• Main backgrounds: $t\bar{t}$, WW, $Z/\gamma^* \rightarrow \tau\tau$

also W/Z plus jets, WZ/ZZ, single top and $W/Z + \gamma$

- \Rightarrow Efficiently reduced in exclusive 7 TeV analysis by rejecting jets and $E_T^{miss} < 20 \text{ GeV}$
 - Modelling of main background agrees with ATLAS
 - Fake background estimated from data

SM Background

• Main backgrounds: $t\bar{t}$, WW, $Z/\gamma^* \rightarrow \tau \tau$

ATLAS 8TeV 1503.04430

also W/Z plus jets, $W\!Z/Z\!Z$,single top and $W/Z+\gamma$

- ⇒ Efficiently reduced in exclusive 7 TeV analysis by rejecting jets and $E_T^{miss} < 20$ GeV
 - Modelling of main background agrees with ATLAS
 - Fake background estimated from data
- \Rightarrow Use background from ATLAS publications

Selection Criteria

Same selection criteria as in ATLAS 7 and 8 TeV analyses.

- oppositely charged leptons
- Electrons: $E_T > 25$ GeV, $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$, tight identification criteria
- Muons: $p_T > 25$ GeV, $|\eta| < 2.4$
- Tau: $E_T > 25$ GeV, $0.03 < |\eta| < 2.47$
- Lepton isolation: scalar sum of lepton p_T within cone of ΔR = 0.2(0.4) is less than 10% (6%) of lepton p_T for 7 (8) TeV search
- Jets reconstructed anti- k_T algorithm with radius parameter 0.4
- 7 TeV analysis: jets rejected if $p_T > 30$ GeV or $E_T^{miss} < 25$ GeV
- Invariant mass of lepton pair: > 100(200) GeV in 7(8) TeV analysis
- azimuthal angle difference $\Delta \phi >$ 3(2.7) in 7 (8) TeV analysis

14 TeV projection

Same as 7 TeV exclusive analysis and $p_T(\ell) > 300$ GeV and $E_T^{miss} < 20$ GeV

Limits from LHC on Cutoff Scale in TeV

$\bar{\ell}_i \ell_j$ $\bar{q}q$		$ar{e}\mu$		$ar{e} au$	$\bar{\mu}\tau$
	7 TeV	8 TeV	14 TeV	8 TeV	8 TeV
ūu	2.6	2.9	8.9	2.4	2.2
đd	2.3	2.3	8.0	2.1	1.9
<u></u> 55	1.1	1.4	4.0	0.95	0.88
īс	0.97	1.3	3.6	0.82	0.78
Бb	0.74	1.0	2.7	0.63	0.61

- 8 TeV analysis gives only a slight improvement compared to 7 TeV despite 10 times more data because of large background
- $e\tau$ and $\mu\tau$ limits weaker than $e\mu$ because of low τ -tagging rate and higher fake background
- 14 TeV projection: same search strategy as 7 TeV exclusive search ¹⁷

Conclusions and Outlook

Conclusions

Precision experiments win for light quarks LHC competitive for heavy quarks and right-handed τ -leptons $\Lambda \gtrsim 600 - 800 \text{ GeV}$

Outlook

LHC more competitive for vector operators with right-handed quark currents

Outlook

LHC more competitive for vector operators with right-handed quark currents

LHC and Effective Field Theory: a word of caution

Scattering amplitudes grow indefinitely in EFTs

$$\mathcal{A}(s) \simeq rac{s}{\Lambda^2} \stackrel{s o \infty}{\longrightarrow} \infty$$

\Rightarrow Violation of perturbative unitarity

Monojet searches: Shoemaker, Vecchi 1112.5457; Endo, Yamamoto 1403.6610; Yamamoto 1409.5775; El-Hedri, Shepherd, Walker 1412.5660

\Rightarrow Solutions...

- Simplified models 1507.00966
- Truncation Busoni, De Simone, Morgante, Riotto 1307.2253, +Gramling 1402.1275, +Jacques 1405.3101

$$rac{1}{Q_{tr}^2-M^2}=-rac{1}{M^2}\left[1+rac{Q_{tr}^2}{M^2}+\dots
ight]$$

Discard events with $Q_{tr} > M \equiv \Lambda / \sqrt{g_q g_{\chi}}$

• Impose unitarity of S-matrix ... e.g. Bell, Busoni, Kobakhidze, Long, MS 1606.02722

LHC and Effective Field Theory: a word of caution

• Scattering amplitudes grow indefinitely in EFTs

$$\mathcal{A}(s) \simeq rac{s}{\Lambda^2} \stackrel{s o \infty}{\longrightarrow} \infty$$

 \Rightarrow Violation of perturbative unitarity

Monoiet searches: Shoemaker, Vecchi 1112.5457; Endo, Yamamoto 1403.6610; Yamamoto 1409.5775; El-Hedri, Shepherd, Walker 1412.5660

\Rightarrow Solutions...

- Simplified models 1507.00966
- Truncation Busoni, De Simone, Morgante, Riotto 1307.2253, +Gramling 1402.1275, +Jacques 1405.3101

$$rac{1}{Q_{tr}^2-M^2}=-rac{1}{M^2}\left[1+rac{Q_{tr}^2}{M^2}+\dots
ight]$$

Discard events with $Q_{tr} > M \equiv \Lambda/\sqrt{g_q g_\chi}$

• Impose unitarity of S-matrix ... e.g. Bell, Busoni, Kobakhidze, Long, MS 1606.02722

Unitarity of S-matrix

Scattering processes described by S matrix

$$S = \mathbb{I} + 2iT$$

It is unitary

 $S^{\dagger}S = \mathbb{I}$

In terms of *T*-matrix, unitarity implies the optical theorem

$$T-T^{\dagger}=2i T^{\dagger}T$$

For an eigenvalue A of T

$$|1+2iA|^2 = 1$$
$$\Rightarrow \left|A - \frac{i}{2}\right| = \frac{1}{2}$$

• Perturbative Expansion of S-matrix not unitary at fixed order

 $S = \mathbb{I} + 2iT \qquad T = T_1 + T_2 + T_3 + \dots$

Expansion of K-matrix unitary order by order

$$S = \frac{\mathbb{I} + iK}{\mathbb{I} - iK} \qquad \qquad K = K_1 + K_2 + K_3 + \dots$$

S is Cayley transform of K: K hermitean \Leftrightarrow S unitary

Heitler 1941: Schwinger 1948

• Perturbative Expansion of S-matrix not unitary at fixed order

$$S = \mathbb{I} + 2iT \qquad T = T_1 + T_2 + T_3 + \dots$$

• Expansion of K-matrix unitary order by order

$$S = \frac{\mathbb{I} + iK}{\mathbb{I} - iK} \qquad \qquad K = K_1 + K_2 + K_3 + \dots$$

S is Cayley transform of K: K hermitean \Leftrightarrow S unitary

Optical theorem $T - T^{\dagger} = 2i \ T^{\dagger} T$ rewrite to $\left(T^{-1} + i \ \mathbb{I}\right)^{\dagger} = T^{-1} + i \ \mathbb{I} \equiv K^{-1}$

Wigner 1946; Wigner, Eisenbud 1947; Gupta 1950

$$\Rightarrow T_U = \frac{1}{K^{-1} - i \mathbb{I}}$$

Heitler 1941: Schwinger 1948

• Perturbative Expansion of S-matrix not unitary at fixed order

$$S = \mathbb{I} + 2iT \qquad T = T_1 + T_2 + T_3 + \dots$$

• Expansion of K-matrix unitary order by order

$$S = \frac{\mathbb{I} + iK}{\mathbb{I} - iK} \qquad \qquad K = K_1 + K_2 + K_3 + \dots$$

S is Cayley transform of K: K hermitean \Leftrightarrow S unitary

Optical theorem ${\cal T}-{\cal T}^{\dagger}=2i\;{\cal T}^{\dagger}{\cal T}$

write to

$$\left(T^{-1}+i\mathbb{I}\right)^{\dagger}=T^{-1}+i\mathbb{I}\equiv K^{-1}$$

Wigner 1946; Wigner, Eisenbud 1947; Gupta 1950; Kilian et. al 1408.6207

$$\Rightarrow T_U = \frac{1}{\operatorname{Re}\left(T^{-1}\right) - i\,\mathbb{I}}$$

21

• Perturbative Expansion of S-matrix not unitary at fixed order

$$S = \mathbb{I} + 2iT \qquad T = T_1 + T_2 + T_3 + \dots$$

• Expansion of K-matrix unitary order by order

$$S = \frac{\mathbb{I} + iK}{\mathbb{I} - iK} \qquad \qquad K = K_1 + K_2 + K_3 + \dots$$

S is Cayley transform of K: K hermitean \Leftrightarrow S unitary

Heitler 1941; Schwinger 1948

Optical theorem

$$T - T^{\dagger} = 2i T^{\dagger} T$$

write to

$$\left(T^{-1}+i\mathbb{I}\right)^{\dagger}=T^{-1}+i\mathbb{I}\equiv K^{-1}$$

Wigner 1946; Wigner, Eisenbud 1947; Gupta 1950; Kilian et. al 1408.6207

$$\Rightarrow T_U = \frac{1}{\operatorname{Re}\left(T^{-1}\right) - i\,\mathbb{I}}$$

K-Matrix Formalism

$$T_U = \frac{1}{\operatorname{Re}\left(T^{-1}\right) - i\,\mathbb{I}}$$

Wigner 1946; Wigner, Eisenbud 1947; Gupta 1950; Kilian et. al 1408.6207

- Well-known for *WW*-scattering e.g. Alboteanu et. al 0806.4145; Kilian et. al 1408.6207 and hadronic physics e.g. Chung et. al 1995
- Other unitarisation methods: e.g. Inverse Amplitude, N/D, ...
- *K*-matrix formalism is minimal:

no new resonances introduced by unitarisation

- ! Does not describe resonances of true high energy theory
- $\rightarrow\,$ Resonances can be added by hand, if necessary
 - Scattering amplitudes well behaved at high energies
- \rightarrow Allows to derive meaningful limits on EFT models from LHC collisions with high centre of mass energies

Simple Example Bell, Busoni, Kobakhidze, Long, MS 1606.02722

• Effective operator from coloured scalar t-channel mediator

$$\mathcal{L}_1 = rac{1}{\Lambda_{q\chi}^2}ar{q}\gamma_\mu P_R qar{\chi}\gamma^\mu P_L\chi$$

• For $s\gg m_\chi^2,m_q^2$, the *T*-matrix in basis of $(\ket{q_R\bar{q}_L},\ket{\chi_L\bar{\chi}_R})$

$$T = \begin{pmatrix} q_R \bar{q}_L \to q_R \bar{q}_L & \chi_L \bar{\chi}_R \to q_R \bar{q}_L \\ q_R \bar{q}_L \to \chi_L \bar{\chi}_R & \chi_L \bar{\chi}_R \to \chi_L \bar{\chi}_R \end{pmatrix} = -\frac{1}{16\pi^2} \frac{s}{\Lambda_{q\chi}^2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sin^2 \frac{\theta}{2}$$

• Partial wave decomposition: only J = 1

$$T^1 = -rac{1}{12\pi}rac{s}{\Lambda_{q\chi}^2} egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$$

• Unitarised *T*-matrix $T_U^J \equiv \frac{1}{\operatorname{Re}[(T^J)^{-1}] - i\mathbb{I}}$

$$T_U^1 = \frac{1}{s^2 + 144\pi^2 \Lambda_{q\chi}^4} \begin{pmatrix} is^2 & -12\pi s \Lambda_{q\chi}^2 \\ -12\pi s \Lambda_{q\chi}^2 & is^2 \end{pmatrix} \stackrel{s \to \infty}{\longrightarrow} i \mathbb{I} \qquad 21$$

Backup Slides

Limit setting

7 and 8 TeV

 $\bullet\,$ Use maximum likelihood estimator for 7 and 8 TeV

$$\mathcal{L}_i(\mu, \tilde{ heta}_i | n_i) = \mathcal{P}(n_i | \mu s_i + b_i) \mathcal{G}(\tilde{ heta}_i, 0, 1)$$

 ${\cal P}$ is Poisson function and ${\cal G}$ Gaussian function, nuisance parameters $ilde{ heta}_i$

- SM background and observed events taken from ATLAS publications
- Total likelihood function is product

$$\mathcal{L} = \prod_i \mathcal{L}_i$$

14 TeV

• Estimate reach for 14 TeV using

Significance =
$$\frac{S}{\sqrt{S + (\Delta S)^2 + (\Delta B)^2}}$$

with $\Delta S = 10\% S$ and $\Delta B = 10\% B$.