The Reduced MSSM

Myriam Mondragón IFUNAM

Sven Heinemeyer Nick Tracas George Zoupanos

In Memory of Wolfhart Zimmermann 17 February 1928 – 18 September 2016

FLASY 2016, Valparaíso

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </p

- What happens as we approach the Planck scale? or just as we go up in energy...
- How do we go from a fundamental theory to field theory as we know it?
- Can we find out?
- How are the gauge, Yukawa and Higgs sectors related at a more fundamental level?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </p

- How do particles get their very different masses?
- What is the nature of the Higgs and the eW symmetry breaking?
- Where is the new physics??

Search for understanding relations between parameters

addition of symmetries.

N = 1 SUSY GUTs.

Complementary approach: look for RGI relations among couplings at GUT scale \longrightarrow Planck scale

⇒ reduction of couplings

resulting theory: less free parameters ... more predictive

Gauge Yukawa Unification – GYU and Reduction of Couplings

Remarkable: reduction of couplings provides a way to relate two previously unrelated sectors

gauge and Yukawa couplings

Reduction of couplings in third generation provides predictions for quark masses (top and bottom)

Including soft breaking terms gives Higgs masses and SUSY spectrum

Kapetanakis, M.M., Zoupanos (1993), Kubo, M.M., Olechowski, Tracas, Zoupanos (1995,1996,1997); Oehme (1995); Kobayashi, Kubo, Raby, Zhang (2005); Gogoladze, Mimura, Nandi (2003,2004); Gogoladze, Li, Senoguz, Shafi, Khalid, Raza (2006,2011); M.M., Tracas, Zoupanos (2014)

(日) (日) (日) (日) (日) (日) (日)

Gauge Yukawa Unification in Finite Theories

Dimensionless sector of all-loop finite SU(5) model

 $M_{top} \sim 178 \text{ GeV}$ large tan β , heavy SUSY spectrum

Kapetanakis, M.M., Zoupanos, Z.f.Physik (1993)

 M_{top}^{exp} 176 ± 18 GeV
 found in 1995

 $M_{top}^{th} \sim 172.5$ 2007

 M_{top}^{exp} 173.1 ± .09 GeV
 2013

Very promising, a more detailed analysis was clearly needed

Higgs mass \sim 121 – 126 GeV

Heinemeyer M.M., Zoupanos, JHEP, 2007; Phys.Lett.B (2013)

(ロ) (同) (三) (三) (三) (○) (○)

 $M_H^{exp} \sim 126 \pm 1 \text{ GeV}$ 2013

Gauge Yukawa Unification in the MSSM

 Possible to have a reduced system in the third generation compatible with quark masses

large tan β , heavy SUSY spectrum

• Higgs mass \sim 123 – 126 GeV

M.M., Tracas, Zoupanos, Phys.Lett.B 2014

Reduction of Couplings

A RGI relation among couplings $\Phi(g_1, \ldots, g_N) = 0$ satisfies

$$\mu d\Phi/d\mu = \sum_{i=1}^{N} \beta_i \partial \Phi/\partial g_i = 0.$$

 $g_i =$ coupling, β_i its β function

Finding the (N - 1) independent Φ 's is equivalent to solve the reduction equations (RE)

$$\beta_g \left(dg_i / dg \right) = \beta_i \; ,$$

 $i = 1, \cdots, N$

(日) (日) (日) (日) (日) (日) (日)

- Reduced theory: only one independent coupling and its β function
- complete reduction: power series solution of RE

$$g_a = \sum_{n=0} \rho_a^{(n)} g^{2n+1}$$

- uniqueness of the solution can be investigated at one-loop valid at all loops
 Zimmermann, Oehme, Sibold (1984,1985)
- The complete reduction might be too restrictive, one may use fewer Φ's as RGI constraints
- Reduction of couplings is essential for finiteness

finiteness: absence of ∞ renormalizations $\Rightarrow \quad \beta^N = 0$

- SUSY no-renormalization theorems
 - ${\scriptstyle \blacktriangleright} \Rightarrow$ only study one and two-loops
 - guarantee that is gauge and reparameterization invariant to all loops

Reduction of couplings: example without symmetry

One Dirac spinor ψ and one pseudoscalar ${\it B}$ in renormalizable interaction

$$\mathcal{L}_{\textit{int}} = g ar{\psi} B \gamma_5 \psi - rac{\lambda}{4!} B^4$$

 β functions at one-loop order are

$$\beta_{g^2} = \frac{1}{16\pi^2} (5g^4 + \dots)$$

$$\beta_{\lambda} = \frac{1}{16\pi^2} (\frac{3}{2}\lambda^2 + 4\lambda g^2 - 24g^4...)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We solve the reduction equations

$$\beta_{g^2} \frac{d\lambda}{dg^2} = \beta_\lambda$$

with a power series solution

$$\lambda = g^2 (\rho^{(0)} + \rho^{(1)} g^2)$$

The only possible solution for small g is

$$\lambda = \frac{1}{3}(1 + \sqrt{145})g^2 + \rho^{(1)}g^4 + \dots$$

The two coupling model has been reduced to a one coupling renormalizable one.

Quartic coupling constant determined uniquely by Yukawa coupling

No symmetries are known for this system \Rightarrow symmetries need not be the only way to reduce couplings consistently

Reduction of couplings: example with symmetry

Consider an SU(N) gauge theory with the following matter content:

 $\phi^i(\mathbf{N})$ and $\hat{\phi}_i(\overline{\mathbf{N}})$ are complex scalars $\psi^i(\mathbf{N})$ and $\hat{\psi}_i(\overline{\mathbf{N}})$ are left-handed Weyl spinors $\lambda^a(a = 1, \dots, N^2 - 1)$ is right-handed Weyl spinor in the adjoint representation of SU(N).

The Lagrangian is:

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\sqrt{2} \{ g_{Y} \overline{\psi} \lambda^{a} T^{a} \phi - \hat{g}_{Y} \overline{\hat{\psi}} \lambda^{a} T^{a} \hat{\phi} + \text{h.c.} \}$$

- $V(\phi, \overline{\phi}),$
$$V(\phi, \overline{\phi}) = \frac{1}{4} \lambda_{1} (\phi^{i} \phi^{*}_{i})^{2} + \frac{1}{4} \lambda_{2} (\hat{\phi}_{i} \hat{\phi}^{*\,i})^{2}$$

+ $\lambda_{3} (\phi^{i} \phi^{*}_{i}) (\hat{\phi}_{j} \hat{\phi}^{*\,j}) + \lambda_{4} (\phi^{i} \phi^{*}_{j}) (\hat{\phi}_{i} \hat{\phi}^{*\,j}),$

(日) (日) (日) (日) (日) (日) (日)

Applying the REs method and searching for a power solution we get:

$$g_Y = \hat{g}_Y = g ,$$

 $\lambda_1 = \lambda_2 = \frac{N-1}{N} g^2 ,$
 $\lambda_3 = \frac{1}{2N} g^2 , \lambda_4 = -\frac{1}{2} g^2 .$

which corresponds to an N = 1 supersymmetric gauge theory SUSY solutions appear in many cases when the RE method is applied

Reduction of couplings: the Standard Model

It is possible to make a reduced system in the Standard Model in the matter sector:

solve the REs, reduce the Yukawa and Higgs in favour of $\alpha_{\mathcal{S}}$ gives

$$\alpha_t / \alpha_s = \frac{2}{9}$$
; $\alpha_\lambda / \alpha_s = \frac{\sqrt{689} - 25}{18} \simeq 0.0694$

border line in RG surface, Pendleton-Ross infrared fixed line But including the corrections due to non-vanishing gauge couplings up to two-loops, changes these relations and gives

 $M_t = 98.6 \pm 9.2 GeV$

and

$$M_h = 64.5 \pm 1.5 GeV$$

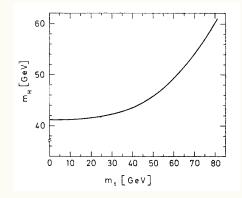
Both out of the experimental range

Kubo, Sibold and Zimmermann, 1984, 1985

(日) (日) (日) (日) (日) (日) (日)

General asymptotic reduction in SM

More parameters (couplings): if top and Higgs heavy \Rightarrow new physics heavy



Kubo, Sibold and Zimmermann, 1985; Sibold and Zimmermann, 1987

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SUSY breaking soft terms

neutrinos

 v_2

Introduce over 100 new free parameters M. Strassler 2011 The Minimal Realistic Version of the Gluinos Supersymmetric Standard Model h u squarks v_2 $\mu(v_1)$ e μYe H Higgs sleptons/ Field 5 higgs sneutrinos Weak Nuclear Force quarks particles W* W updowntype type charged leptons

Electromagnetic Force

Photon

Supersymmetry "Breaking"

Strong Nuclear Force

Gluons (8 types)

u

RGI in the Soft Supersymmetry Breaking Sector

Supersymmetry is essential. It has to be broken, though...

$$-\mathcal{L}_{\rm SB} = \frac{1}{6} \, h^{jjk} \, \phi_i \phi_j \phi_k + \frac{1}{2} \, b^{jj} \, \phi_i \phi_j + \frac{1}{2} \, (m^2)^j_i \, \phi^{*\,i} \phi_j + \frac{1}{2} \, M \, \lambda \lambda + {\rm H.c.}$$

h trilinear couplings (A), b^{ij} bilinear couplings, m^2 squared scalar masses, M unified gaugino mass

The RGI method has been extended to the SSB of these theories.

 One- and two-loop finiteness conditions for SSB have been known for some time

Jack, Jones, et al.

 It is also possible to have all-loop RGI relations in the finite and non-finite cases

Kazakov; Jack, Jones, Pickering

SSB terms depend only on *g* and the unified gaugino mass *M* universality conditions

h = -MC, $m^2 \propto M^2,$ $b \propto M\mu$

Very appealing! But too restrictive

it leads to phenomenological problems:

- Charge and colour breaking vacua
- Incompatible with radiative electroweak breaking
- The lightest susy particle (LSP) is charged

Possible to relax the universality condition to a sum-rule for the soft scalar masses

 \Rightarrow better phenomenology.

Kobayashi, Kubo, M.M., Zoupanos

(ロ) (同) (三) (三) (三) (○) (○)

Soft scalar sum-rule to all loops

The relation among couplings is assumed RGI

$$h^{ijk} = -M(C^{ijk})' \equiv -Mrac{dC^{ijk}(g)}{d\ln g}$$

The reduction equations admit a power series solution

$$C^{ijk} = g \sum_{n=0} \rho^{ijk}_{(n)} g^{2n} \Rightarrow h^{ijk} = -MC^{ijk} + \dots = -M\rho^{ijk}_{(0)} g + O(g^5)$$

We find the the following soft scalar-mass sum rule, also to all-loops for *i*, *j*, *k* with $\rho_{(0)}^{ijk} \neq 0$, where $\Delta^{(1)}$ is the two-loop correction =0 for universal choice

$$m_{l}^{2} + m_{j}^{2} + m_{k}^{2} = |M|^{2} \left\{ \frac{1}{1 - g^{2}C_{2}(G)/(8\pi^{2})} \frac{d\ln C^{ijk}}{d\ln g} + \frac{1}{2} \frac{d^{2}\ln C^{ijk}}{d(\ln g)^{2}} \right\} \\ + \sum_{l} \frac{m_{l}^{2}T(R_{l})}{C_{2}(G) - 8\pi^{2}/g^{2}} \frac{d\ln C^{ijk}}{d\ln g} .$$

Kazakov et al; Jack, Jones et al; Yamada; Hisano, Shifman; Kobayashi, Kubo, Zoupanos 🗤 🔍

All-loop RGI relations in the soft sector

From reduction equations

$$rac{dC^{ijk}}{dg} = rac{eta_C^{ijk}}{eta_g}$$

we assume the existence of a RGI surface on which

$$h^{ijk} = -Mrac{dC(g)^{ijl}}{d\ln g}$$

holds too in all-orders. Then one can prove, that the following relations are RGI to all-loops

$$M = M_0 \frac{\beta_g}{g},$$

$$h^{ijk} = -M_0 \beta_C^{ijk},$$

$$b^{ij} = -M_0 \beta_\mu^{ij},$$

$$m^2)^i{}_j = \frac{1}{2} |M_0|^2 \mu \frac{d\gamma^i{}_j}{d\mu},$$
(1)

where M_0 is an arbitrary reference mass scale.

If $M_0 = m_{3/2}$ we get exactly the anomaly mediated breaking terms but with good phenomenology \Rightarrow sum rule

Finiteness

A chiral, anomaly free, N = 1 globally supersymmetric gauge theory based on a group G with gauge coupling constant g has a superpotential

$$W=\frac{1}{2}\,m^{ij}\,\Phi_i\,\Phi_j+\frac{1}{6}\,C^{ijk}\,\Phi_i\,\Phi_j\,\Phi_k\;,$$

Requiring one-loop finiteness $\beta_g^{(1)} = \mathbf{0} = \gamma_i^{j(1)}$ gives the following conditions:

$$\sum_{i} T(R_{i}) = 3C_{2}(G), \qquad \frac{1}{2}C_{ipq}C^{jpq} = 2\delta_{i}^{j}g^{2}C_{2}(R_{i}).$$

 $C_2(G)$ quadratic Casimir invariant, $T(R_i)$ Dynkin index of R_i , C_{ijk} Yukawa coup., g gauge coup.

- restricts the particle content of the models
- relates the gauge and Yukawa sectors

► One-loop finiteness ⇒ two-loop finiteness

Jones, Mezincescu and Yao (1984,1985)

- One-loop finiteness restricts the choice of irreps R_i, as well as the Yukawa couplings
- Cannot be applied to the susy Standard Model (SSM):
 C₂[U(1)] = 0
- The finiteness conditions allow only SSB terms

It is possible to achieve all-loop finiteness $\beta^n = 0$:

Lucchesi, Piguet, Sibold

- 1. One-loop finiteness conditions must be satisfied
- 2. The Yukawa couplings must be a formal power series in *g*, which is solution (isolated and non-degenerate) to the reduction equations

Unique solution implies discrete symmetries

Several aspects of Finite Models have been studied

SU(5) Finite Models studied extensively

Rabi et al; Kazakov et al; López-Mercader, Quirós et al; M.M, Kapetanakis, Zoupanos; etc

- One of the above coincides with a non-standard Calabi-Yau
 SU(5) × E₈
 Greene et al; Kapetanakis, M.M., Zoupanos
- Finite theory from compactified string model also exists (albeit not good phenomenology)
- Criteria for getting finite theories from branes
 Hanany, Strassler, Uranga
- N = 2 finiteness
 Frere, Mezincescu and Yao
- Models involving three generations
 Babu, Enkhbat, Gogoladze
- Some models with SU(N)^k finite ↔ 3 generations, good phenomenology with SU(3)³
 Ma, M.M, Zoupanos
- Relation between commutative field theories and finiteness studied
 Jack and Jones
- Proof of conformal invariance in some finite theories

Kazakov

SU(5) Finite Models

We study two models with SU(5) gauge group. The matter content is

$3\overline{5} + 310 + 4\{5 + \overline{5}\} + 24$

The models are finite to all-loops in the dimensionful and dimensionless sector. In addition:

- The soft scalar masses obey a sum rule
- At the M_{GUT} scale the gauge symmetry is broken and we are left with the MSSM
- At the same time finiteness is broken
- The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs {5 + 5} which couple to the third generation

The difference between the two models is the way the Higgses couple to the **24**

Kapetanakis, Mondragón, Zoupanos; Kazakov et al.

(ロ) (同) (三) (三) (三) (○) (○)

Phenomenology

The gauge symmetry is broken below M_{GUT} , and what remains are boundary conditions of the form $C_i = \kappa_i g$, h = -MC and the sum rule at M_{GUT} , below that is the MSSM.

- Fix the value of $m_{\tau} \Rightarrow \tan \beta \Rightarrow M_{top}$ and m_{bot}
- We assume a unique susy breaking scale
- The LSP is neutral
- The solutions should be compatible with radiative electroweak breaking
- No fast proton decay

We also

 Allow 5% variation of the Yukawa couplings at GUT scale due to threshold corrections

(ロ) (同) (三) (三) (三) (○) (○)

- Include radiative corrections to bottom and tau, plus resummation (very important!)
- Estimate theoretical uncertainties

We look for the solutions that satisfy the following constraints:

 Right masses for top and bottom fact of life

FeynHiggs

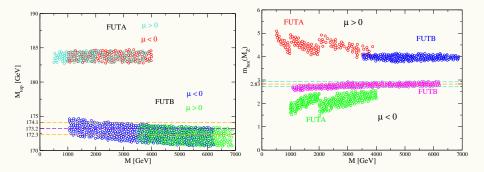
 B physics observables fact of life

The lightest MSSM Higgs boson mass The SUSY spectrum

FeynHiggs, FUT

(日)

TOP AND BOTTOM MASS



FUTA: $M_{top} \sim 182 \sim 185 \ GeV$ FUTB: $M_{top} \sim 172 \sim 174 \ GeV$ Theoretical uncertainties ~ 4%

 Δb and $\Delta \tau$ included, resummation done

FUTB $\mu < 0$ favoured

Experimental data

We use the experimental values of M_H to compare with our previous results (M_H =~ 121 − 126 GeV, 2007) and put extra constraints M^{exp}_H = 126 ± 2 ± 1 and M^{exp}_H = 125.1 ± 3.1 2 GeV theoretical, 1 GeV experimental

We also use the BPO constraints

 $BR(b \rightarrow s\gamma)SM/MSSM : |BRbsg - 1.089| < 0.27$

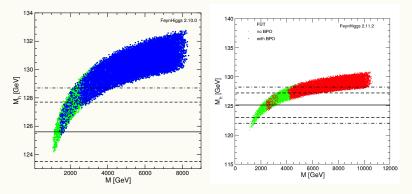
 $BR(B_u \rightarrow \tau \nu)SM/MSSM$: |BRbtn - 1.39| < 0.69

 $\Delta M_{B_s}SM/MSSM$: 0.97 ± 20

 $BR(B_s \to \mu^+ \mu^-) = (2.9 \pm 1.4) \times 10^{-9}$

► We can now restrict (partly) our boundary conditions on *M*

Higgs mass



FUTB

constrained by $M_{Higgs} \sim$ 126 \pm 3 (2013) and 125.1 \pm 3 GeV (2015)

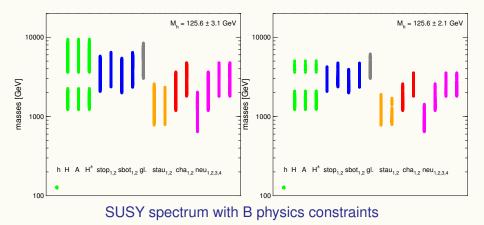
blue and red points satisfy B Physics constraints 2013 and 2016, 2016 with 2-loop m_{top} corrections

Uncertainties ±3 GeV (FeynHiggs)

Heinemeyer, M.M., Tracas, Zoupanos (2013) (2016)

(日)

S-SPECTRUM



Challenging for LHC

Heinemeyer, M.M., Zoupanos (2014)

3

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Results for FUTs

When confronted with low-energy precision data only FUTB $\mu < 0$ survives

- $M_{top} \sim 173 \; GeV \; 4\%$ $M_{top}^{exp} \exp = (173.2 \pm 0.9) \text{GeV}$
- $m_{bot}(M_Z) \sim 2.8 \ GeV \ 8 \ \% \ m_{bot}^{exp}(M_Z) = (2.83 \pm 0.10) \text{GeV}$
- $M_{Higgs} \sim 125 \; GeV(\pm 3 GeV)$
- $\tan\beta \sim 44-46$
- ▶ s-spectrum ≥ 500 GeV

consistent with exp bounds

 $M_{Hiags}^{exp} = 125.1 \pm 1$

In progress

3 families with discrete symmetry

under way

(日) (日) (日) (日) (日) (日) (日)

neutrino masses via R

- Finiteness provides us with an UV completion of our QFT
- RGI takes the flow in the right direction for the third generation and Higgs masses also for susy spectrum (high)
- What happens with the first and second generations?
- Can it give us insight into the flavour structure?
- Can we have successful reduction of couplings in a SM-like theory?

(日) (日) (日) (日) (日) (日) (日)

Reduction of couplings in the MSSM

The superpotential

 $W = Y_t H_2 Q t^c + Y_b H_1 Q b^c + Y_\tau H_1 L \tau^c + \mu H_1 H_2$

with soft breaking terms,

$$-\mathcal{L}_{SSB} = \sum_{\phi} m_{\phi}^2 \phi^* \phi + \left[m_3^2 H_1 H_2 + \sum_{i=1}^3 \frac{1}{2} M_i \lambda_i \lambda_i + \text{h.c.} \right]$$
$$+ \left[h_t H_2 Q t^c + h_b H_1 Q b^c + h_\tau H_1 L \tau^c + \text{h.c.} \right],$$

then, reduction of couplings implies

$$\beta_{\mathbf{Y}_{t,b,\tau}} = \beta_{g_3} \frac{d\mathbf{Y}_{t,b,\tau}}{dg_3}$$

(日)

- Assuming perturbative expansion of third generation
 Yukawa couplings in favour of g₃ leads to imaginary Y_{\(\tau\)}
- We reduce Y_t, Y_b with g₃ and leave g_{1,2} and Y_τ as corrections
- Sum rule is exact at the unification scale
- Reduction eqs give boundary conditions at this point, the corrections do depend on the energy scale

(ロ) (同) (三) (三) (三) (三) (○) (○)

► The tau mass at low energy constrains *Y*_t, *Y*_b

Possible to have both top and bottom masses simultaneously correct (non-trivial) only with $\mu < 0$

Reduced third generation quark masses

$$\frac{Y_t^2}{4\pi} = c_1 \frac{g_3^2}{4\pi} + c_2 \left(\frac{g_3^2}{4\pi}\right)^2$$
(2)
$$\frac{Y_b^2}{4\pi} = p_1 \frac{g_3^2}{4\pi} + p_2 \left(\frac{g_3^2}{4\pi}\right)^2$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

are given by

$$c_1 = \frac{1}{3} + \frac{71}{525} \frac{\alpha_1}{\alpha_3} + \frac{3}{7} \frac{\alpha_2}{\alpha_3} + \frac{1}{35} \frac{Y_\tau^2 / 4\pi}{\alpha_3},$$

$$p_1 = \frac{1}{3} + \frac{29}{525} \frac{\alpha_1}{\alpha_3} + \frac{3}{7} \frac{\alpha_2}{\alpha_3} - \frac{6}{35} \frac{Y_\tau^2 / 4\pi}{\alpha_3},$$

 Y_{τ} not reduced, its reduction gives imaginary values

 c_2 and p_2 also found (long expressions not shown)

Soft breaking terms

The reduction of couplings in the SSB sector gives the following boundary conditions at the unification scale

 $Y_t^2 = c_1 g_3^2 + c_2 g_3^4 / (4\pi)$ and $Y_b^2 = p_1 g_3^2 + p_2 g_3^4 / (4\pi)$ $h_{t,b} = -c_{t,b} M_3 Y_{t,b},$

At the unification scale $c_t = c_b = 1$ and we recover

$$m_{H_2}^2 + m_Q^2 + m_{t^c}^2 = M_3^2,$$

$$m_{H_1}^2 + m_Q^2 + m_{b^c}^2 = M_3^2,$$

(日) (日) (日) (日) (日) (日) (日)

 M_3 is gluino mass

Corrections

- Same as with Yukawas the τ coupling cannot be reduced
- Possible to calculate the corrections coming from \(\alpha_1, \alpha_2, g_\)\) to sum rule

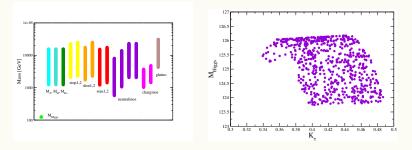
$$c_t = rac{N_t}{D}$$
 $c_b = rac{N_b}{D}$

$$N_t = 240 + 400p_1 + 39\rho_1^2 + 71p_1\rho_1^2 + 135\rho_2^2 + 225p_1\rho_2^2 - 15p_1\sigma_h\sqrt{\rho_\tau}$$

 $N_b = 240 + 400c_1 + 21\rho_1^2 + 29c_1\rho_1^2 + 135\rho_2^2 + 225c_1\rho_2^2 + 45\sigma_h\sqrt{\rho_\tau} + 90c_1\sigma_h\sqrt{\rho_\tau}$

 $D = 15(9 + 18p_1 + 18c_1 + 35c_1p_1)$

Before corrections to the sum rule (2013,2014)



SUSY spectrum and the Higgs mass

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

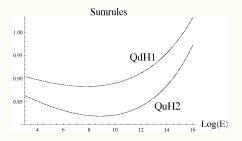
Reduction of the third generation of quark masses at M_{GUT} , before corrections to the sum rule and with one-loop corrections from m_t to the Higgs mass

Corrections to sum rule

Corrections to the sum-rule are scale dependent.

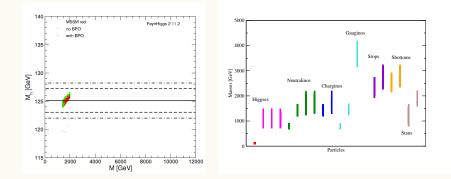
$$m_{H_2}^2 + m_Q^2 + m_{t^c}^2 = M_3^2 \frac{N_{SR1}}{D_{SR}},$$

 $m_{H_1}^2 + m_Q^2 + m_{b^c}^2 = M_3^2 \frac{N_{SR2}}{D_{SR}},$



At the unification scale they are < 3 - 5%, at other scales they can be larger (< 17%)

Example, preliminary - not complete



Example with sume rule at 3.0×10^{13} GeV, no corrections to sum-rule, satisfying phenomenological constraints

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

Results in Reduced MSSM

- Possible to have reduction of couplings in MSSM
- Up to now only attempted in SM or in GUTs
- Reduced system further constrained by phenomenology: compatible with quark masses with µ < 0</p>

(日) (日) (日) (日) (日) (日) (日)

- SUSY spectrum, large $\tan \beta$
- \blacktriangleright Higgs mass \sim 123 \sim 127 GeV
- Heavy susy spectrum 500 $GeV \lesssim M_{LSP}$

Conclusions

- Reduction of couplings: powerful principle implies Gauge Yukawa Unification
- Finiteness, interesting and predictive principle
 ⇒ reduces greatly the number of free parameters
- completely finite theories

 i.e. including the SSB terms, that satisfy the sum rule
- Confronting the SU(5) FUT models with low-energy precision data does distinguish among models
 FUTB favoured
- Possible to have reduction of couplings in MSSM (RMSSM)
- Heavy SUSY spectrum
- ▶ only solutions for µ < 0 compatible with quark masses</p>
- large tan β
- s-spectrum starts above ~ 500 GeV
- Higgs mass M_h ~ 125 GeV
- corrections to Yukawa couplings and sum rule calculated, depend on scale
- Detailed study of SUSY masses, Higgs decays, and three generations in progress

(日)

Similar global results for FUT and RMSSM, but details differ

Propaganda: Job offerings at IF-UNAM and DM workshop

http://www.fisica.unam.mx/congresos/darkmatter/

The superpotential which describes the two models takes the form

$$W = \sum_{i=1}^{3} \left[\frac{1}{2} g_{i}^{u} \mathbf{10}_{i} \mathbf{10}_{i} H_{i} + g_{i}^{d} \mathbf{10}_{i} \overline{\mathbf{5}}_{i} \overline{H}_{i} \right] + g_{23}^{u} \mathbf{10}_{2} \mathbf{10}_{3} H_{4}$$
$$+ g_{23}^{d} \mathbf{10}_{2} \overline{\mathbf{5}}_{3} \overline{H}_{4} + g_{32}^{d} \mathbf{10}_{3} \overline{\mathbf{5}}_{2} \overline{H}_{4} + \sum_{a=1}^{4} g_{a}^{f} H_{a} \mathbf{24} \overline{H}_{a} + \frac{g^{\lambda}}{3} (\mathbf{24})^{3}$$

find isolated and non-degenerate solution to the finiteness conditions

The unique solution implies discrete symmetries We will do a partial reduction, only third generation

The finiteness relations give at the M_{GUT} scale

Model A

•
$$g_t^2 = \frac{8}{5} g^2$$

• $g_{b,\tau}^2 = \frac{6}{5} g^2$
• $m_{H_u}^2 + 2m_{10}^2 = M^2$
• $m_{H_d}^2 + m_{\overline{5}}^2 + m_{10}^2 = M^2$

S free parameters: M, m²₅ and m²₁₀

Model B

•
$$g_t^2 = \frac{4}{5} g^2$$

• $g_{b\tau}^2 = \frac{3}{5} g^2$

•
$$m_{H_u}^2 + 2m_{10}^2 = M^2$$

•
$$m_{H_d}^2 - 2m_{10}^2 = -\frac{M^2}{3}$$

•
$$m_{\overline{5}}^2 + 3m_{10}^2 = \frac{4M^2}{3}$$

► 2 free parameters: M, m²₅

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●