On High Energy Physics and Quantum Information ${ }^{1}$

Adil Belhaj
Polydisciplinary faculty, Sultan Moulay Slimane University, Béni Mellal

${ }^{1}$ High Energy Physics Workshop in Morocco, Tanger

Very happy with 20 years, working on theoretical high energy physies

Collaborations in High Energy Physics: 1997-2017

- Developing scientific collaborations in High Energy Physics and related subjects in Morocco

1. Mohammed V University, Rabat

Collaborators: Hassan El Saidi
2. CNESTEN, Rabat

Collaborators: Bouchra Belhorma, Hassan El Saidi
3. Ibn Tofail University, Kenitra Collaborators: Moulay Brahim Sedra
4. Cadi Ayyad University, Marrakesh Collaborators: Mohamed Chabab
5. Ibn Zohr University, Agadir Collaborators: Hasan El Moumni
6. Sultan Moulay Simane University, Beni Mellal Collaborators: Nourdine Askor, Bouzid Manaut

- Collaborating with European, North American and International Institutes

Spain, Chile, Canada, ...

Rabat:1997-2011

- Scientific contributions in HEP and related topics

1. String/M-theory
2. Particle physics
3. Mathematical tools applied to High Energy Physics
4. Mathematical physics

- Participation to supervising PhD-students on HEP
- Scientific projects in collaboration with national and international experts on HEP
- Invitation of scientists and international experts:
A. Segui, M. P. Garcia del Moral, B. B. Janssen, P. Diaz, M. Asorey, L. J Boya, C. Hoyos, S. Montanez, J. Walcher, D. Cremades, K. Landsteiner, E. Lopez, J. Rasmussen, C. Gomez, J.J. Manjarin, A. Sebbar, J. McKay.
- Building Scientific Bridge between Europe and HEP in Rabat.

Kenitra

- Scientific contributions in HEP and theoretical physics

1. Black holes in String/M-Theory
2. Quantum Information Theory
3. Symmetry and Physics

- Scientific puclications
- Co-supervising PhD-students on HEP

1. Zarakiae Benslimane (2014-2018)
2. Mohammed Bensed (2016-2019)

- Invitation of scientists and international experts

1. C. A. R. Herdeiro

Marrakesh

- Scientific contributions in HEP and theoretical physics

1. Black holes in string/M-theory
2. Phenomology in F-theory

- Collaborating with PhD-students on HEP
- Publications
- Scientific visits.

Beni Mellal: 2013-

- Scientific contributions in HEP and theoretical physics

1. Black holes in string/M-theory
2. Extended Standard Model
3. Quantum Information

- Publications on HEP
- Organization of national workshops on HEP and Mathematical physics

1. Arougou meeting (2014)
2. Arougou meeting (2015)

- Talks on HEP, mathematical physics, and Lie symmetry.

Theoretical physics activities in Beni Mellal

- 5 professors

1. Bouzid Manaut
2. Soaud Taz
3. Khalid El Rahmani
4. Mostapha Mansor
5. AB

- working on

1. Atomic and nuclear physics
2. Standard Model and particle physics
3. String theory and related topics
4. Quantum Information theory
5. Material physics .

- Scientific publications
- PhD students
- Master on modern physics
- Introduction
- Qubit systems
- String theory/qubit systems
- Real manifold T^{n} in String Theory
- Real supermanifold $T^{n \mid n}$ in String Theory
- Calabi-Yau Manifolds in M-theory.
- Discussion

Based on works with

1. Mohammed Bensed, Kénitra
2. Zakariae Benslimane, Kénitra
3. Moulay Brahim Sedra, Kénitra
4. Antonio Segui, Zaragoza.

Introduction

- Black holes/ qubit systems
- Lie superalgebra/ superqubits.
- Many papers on quantum information
- Supersymmetry and Supermanifols
- Quantum physics
- String theory
- M-theory

Qubit sytems

- Classical bit:

$$
0 \quad 1
$$

- Quantum bit (qubit)

$$
\begin{aligned}
& 0 \rightarrow|0\rangle \\
& 1 \rightarrow|1\rangle
\end{aligned}
$$

- Dirac notation of one-qubit

$$
|\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle
$$

- Vector of two dimensional Hilbert space
- Normalization condition

$$
\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1 .
$$

Remarks on 1-qubit sytem

- Physics
- Hydrogen atom with two states.
- Spin $\frac{1}{2}$ particles.
- Photons in four dimensions.
- Mathematics

$$
\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1 .
$$

- SU(2) Lie group.
- One dimensional projective space: $C P^{1} \equiv S^{2}$
-

n-qubit sytems

- Two-qubits are four configuration systems:

$$
|\psi\rangle=c_{00}|00\rangle+c_{10}|10\rangle+c_{01}|01\rangle+c_{11}|11\rangle
$$

1. Vector of 4 dimensional Hilbert space
2. Normalization condition

$$
\left|c_{00}\right|^{2}+\left|c_{10}\right|^{2}+\left|c_{01}\right|^{2}+\left|c_{11}\right|^{2}=1
$$

- n-qubits:

$$
|\psi\rangle=c_{0 \ldots 0}|0 \ldots 0\rangle+c_{10 \ldots 0}|10 \ldots 0\rangle+\ldots+c_{1 \ldots 1}|1 \ldots 1\rangle
$$

1. 2^{n} configuration state systems
2. Vectors of 2^{n} dimensional Hilbert space.

Realization of qubits

- Motivations

1. Graphic representation of n-qubits
2. 2^{n}.

- Frameworks

1. String theory compactification
2. Clifford algebras.

Realization of qubits

- Motivations

1. Graphic representation of n-qubits
2. 2^{n}.

- Frameworks

1. String theory compactification
2. Clifford algebras.

Ordinary physics

- Ordinary physics
- Treating the objects (particles) as material points
- Particle Physics
- Fundamental Interactions of Nature

1. Strong interaction
2. Weak interaction
3. Electromagnetic interaction
4. Gravitation interaction.

- Gauge Theories: Grand Unified theory (GUT)
- The main problem is the gravity theory.

String Theory

- Ordinary physics
- Treating the objects (particles) as material points
- String theory
- The motion of particles (zero dimensional objects) should be extended to the motion of one dimensional objects: strings.

String

- Two configurations

1. Open string theory
2. Closed string theory

String Theory

- Ordinary physics
- Treating the objects (particles) as material points
- String theory
- The motion of particles (zero dimensional objects) should be extended to the motion of one dimensional objects: strings.

String

- Two configurations

1. Open string theory: Gauge theories
2. Closed string theory: Gravity theory.

String Theory

- Good things
- Possible unified theory of fundamental interactions of nature
- Gravitons, photons,....
- Quantum version of gravity theory.
- Bad things
- Five models.
- Big gauge symmetries: $E_{8} \times E_{8}$, so(32) Lie algebras.
- Dimension of the space-time : $\mathrm{D}=10=1+9$.
- References

1. M. Green, J. Schwarz and E. Witten, Superstring Theory, 2 Vols., Cambridge U.P.1987.
2. A. Belhaj, Introduction to String Theory, arXiv:0808.2957.

String compactification

- Partial solutions

$$
R^{1,9} \rightarrow R^{1,3} \times X^{6}
$$

Compact

Toroidal compactification

- T^{n} : trivial fibration of n circles

$$
x_{i} \equiv x_{i}+1, \quad i=1, \ldots, n
$$

- Real Hodge diagrams

$$
h^{e_{1}, \ldots, e_{n}} \longrightarrow \bigwedge_{\ell=1}^{n}\left(\overline{e_{\ell}}+e_{\ell} d x_{\ell}\right)
$$

e_{ℓ} : binary number taking either 0 or 1 .

- $\bigwedge_{\ell=1}^{n}\left(\overline{e_{\ell}}+e_{\ell} d x_{\ell}\right)$ is a real differential form, on T^{n}, of degree k

$$
k=\sum_{\ell=1}^{n} e_{\ell} .
$$

T^{n} Geometry/qubit correspondence

- Cycles/qubits

$$
h^{e_{1}, \ldots, e_{n}} \longrightarrow \text { node }=\left(e_{1}, \ldots, e_{n}\right) \longrightarrow\left|e_{1}, \ldots, e_{n}\right\rangle .
$$

- The number of the nodes in the k-level

$$
\text { nbr }(k \text {-level nodes })=C_{n}^{k}=b_{k}\left(T^{n}\right)
$$

- Total number of the cycles, in T^{n}, is the total number of the nodes

$$
\mathrm{nbr}(\text { cycles })=\sum_{k=0}^{n} C_{n}^{k}=2^{n}
$$

Example : T^{2}

Example : T^{2}

T^{2}	Adinkra	qubit system	Black hole system
1	(00)	$\|00\rangle$	D0-brane
$d x_{1}$	(10)	$\|10\rangle$	F-string
$d x_{2}$	(01)	$\|01\rangle$	F-string
$d x_{1} d x_{2}$	(11)	$\|11\rangle$	D2-brane

Table: Correspondence between the eight dimensional black hole, Adinkra and qubit systems.

$T^{n \mid n}$ supergeometry and superqubits

- Superqubit can take three values:

$$
0, \quad 1, \quad \S .
$$

- Bosonic and the fermionic states
- Total number of states

$$
3^{n}=\frac{3^{n}-1}{2}+\frac{3^{n}+1}{2} .
$$

- Odd and even geometries on $T^{n \mid n}$
- Supermanifold is a generalization of the manifold concept motivated by supersymmetry.
- In physics, it is a manifold with both bosonic and fermionic coordinates
- These coordinates are denoted by

$$
\left(x_{i}, \theta_{i}, \bar{\theta}_{i}\right)
$$

$x_{i}=$ spacetime vectors
θ_{i} and $\bar{\theta}_{i}=$ Grassmann-valued spinors.

- Example: $T^{n \mid n}$ supergeometry
- Real Hodge diagram of $T^{n \mid n}$

$$
h^{e_{1}, \ldots, e_{n} \mid \alpha_{1}, \ldots, \alpha_{n}} \longrightarrow \prod_{\ell=1}^{n}\left(\overline{e_{\ell}}+e_{\ell} d x_{\ell}\right) \prod_{\alpha=1}^{n}\left(\overline{e_{\alpha}}+e_{\alpha} d \theta_{\alpha}\right)
$$

- Formal supersymmetry structure

$$
\begin{aligned}
& B B=B \\
& B F=F \\
& F B=F \\
& F F=B
\end{aligned}
$$

B and F : bosonic and the fermionic generators respectively.

- Bosonic states

$$
\text { Number of bosonic states }=\frac{3^{n}+1}{2} \text {. }
$$

- Fermionic states

$$
\text { Number of fermionic states }=\frac{3^{n}-1}{2} \text {. }
$$

Example: $T^{2 \mid 2}$

- Diff. forms on $T^{2 \mid 2}$

1. Bosonic forms $1, d x_{1}, d x_{2}, d x_{1} d x_{2}, d \theta_{1} d \theta_{2}$.
2. Fermionic forms $d \theta_{1}, d \theta_{2}, \quad d x_{1} d \theta_{2}, \quad d \theta_{1} d x_{2}$.

- Correspondence

$T^{2 \mid 2}$	Adinkra	qubit system	black hole system
1	$(00 \mid 00)$	$\|00\| 00\rangle$	Bosnic D0-brane
$d x_{1}$	$(10 \mid 00)$	$\|10\| 00\rangle$	Bosonic F-string
$d x_{2}$	$(01 \mid 00)$	$\|01\| 00\rangle$	Bosnic F-string
$d x_{1} d x_{2}$	$(11 \mid 00)$	$\|11\| 00\rangle$	Bosonic D2-brane
$d \theta_{1}$	$(00 \mid 10)$	$\|00\| \S 0\rangle$	Fermionic F-string
$d \theta_{2}$	$(01 \mid 00)$	$\|01\| 0 \S\rangle$	Fermionic F-string
$d \theta_{1} d x_{2}$	$(01 \mid 10)$	$\|01\| \S 0\rangle$	Fermionic F-string
$d \theta_{2} d x_{1}$	$(10 \mid 01)$	$\|10\| 0 \S\rangle$	Fermionic D2-brane
$d \theta_{1} d \theta_{2}$	$(00 \mid 11)$	$\|00\| \S \S\rangle$	Bosnonic D2-brane

Discussions

- One to one correspondence between: qubit systems, Adinkras, Toroidal compactification, extremal black holes, branes.
- n qubits/Real manifold T^{n}.
- n superqubits/Real supermanifold $T^{n \mid n}$.
- Many open questions related to quantum information theory.
- Gates
- Entropy
-

Connection with Calabi-Yau manifolds

- M-theory compactification on the K3 surface (Two dimensional Calabi-Yam manifold).
- Interplay between the three scalar submanifold factors and the extremal black holes obtained from M2-branes.
- The corresponding black hole charges are linked to one, two and four qubit systems.
- Related works:
- AB, Zakaria Benslimane, Moulay Brahim Sedra, Antonio Segui,Qubits from Black Holes in M-theory on K3 Surface, arXiv:1601.07610.
- AB, Mohammed Bensed, Zakaria Benslimane, Moulay Brahim Sedra, Antonio Segui Dyonic black solutions in type II Superstrings.

Thank you

