Laboratory of Physics of Matter and Radiations High Energie Activities

Abdelilah Moussa, Taoufik Ouali and El Hassan Tahri

Mohammed I University – Faculty of Sciences High Energy Physics Workshop Tangier, 27th-28th october 2017

27 octobre 2017

A. Moussa-T. Ouali-E.H. Tahri (UMP - FSO)

Physics of Matter and Radiations laboratory (LPMR)

- LPMR is created in 2010-2011
- LPMR is actually under the direction of Professor Fouad Fethi
- Since then, the LPMR has developed a broad research program on a range of problems among them the high energy physics
- Encourage novel and creative approaches, its goal is to provide broad interdisciplinary research

Physics of Matter and Radiations laboratory

High Energy Physics actvities (HEP) in LPMR

- Experimental HEP (A. Moussa)
 - ATLAS collaboration
 - ANTARES + Km3Net collaboration
 - Medical activities
- Cosmology (T. Ouali)
 - Early universe
 - late time universe
 - Statistical tools (chi squart, Markov chaine Monte Carlo, Fisher Matrix)
- Quantum Information (E.H. Tahri)

HEP group

Aatifa Baargach Farida Bargach Zahra Bouabdallaoui Amine Bouali Imad El Bojaddaini Ahmed Errahmani Abderrahim Lakbir Abdelilah Moussa Taoufik Ouali El Hassan Tahri PhD student PhD student PhD student PhD student Professor PhD student Professor Professor Professor Cosmology Cosmology Cosmology ANTARES Cosmology Quantum information ANTARES, ATLAS Cosmology Quantum information

High Energy Physics actvities (HEP) in LPMR

Cosmology

- Early universe
 - Anti-de sitter/Conformal Fields Theory (AdS/CFT)
 - Inflationary scenario
 - Perturbation theory
- late time universe
 - Singularities
 - Holographic vision
 - Dvali-Gabadadze-Porrati (DGP), Gauss Bonnet (GB) curvature
 - Interaction : cold dark matter (CDM) and dark energy (DE) components
 - Assymptotic behaviour : Dynamical system
- Statistical tools
 - chi squart
 - Markov chaine Monte Carlo
 - Fisher Matrix

Inflationary cosmology

- The imprints of AdS/CFT correspondence on the spectrum of the gravitational waves amplitude
- inflation is driven by a tachyon field (PRD94, 123508 (2016))
- Warm inflation (in preparation)

Results

A. Moussa-T. Ouali-E.H. Tahri (UMP - FSO)

Results

Results

Results

A. Moussa-T. Ouali-E.H. Tahri (UMP - FSO)

Non minimal coupling (NMC) in AdS/CFT contexte

The modified Friedmann equation

$$H^{2} = \frac{1}{3(M_{\rho}^{2} + 2f(\phi))} \left(\rho + \lambda + 6cH^{4}\right)$$

$$\tag{1}$$

The modified Raychaudhuri equation

$$\frac{\ddot{a}}{a} = -\frac{1}{6M_{\phi}^2} \left(\rho + 3p - 2\lambda + 12cH^2(\frac{\ddot{a}}{a} - H^2)\right)$$
(2)

The equation of motion for the scalar field

$$\ddot{\phi} + 3H\dot{\phi} - \frac{df(\phi)}{d\phi}R + \frac{dV(\phi)}{d\phi} = 0$$
(3)

A. Moussa-T. Ouali-E.H. Tahri (UMP - FSO)

Results critical points/lines

Point	×1	×2	у	Existence	Stability	Description
E ₁	+1	0	0	any $\alpha_0, f_0 > 0$	Saddle	Minowski
E ₂	-1	0	0	any $\alpha_0, f_0 > 0$	Saddle	Not physical
F ₁	$\frac{2\sqrt{2f_0}x_2 - \sqrt{\alpha_0^2 - \alpha_0^2 x_2^2 + 8x_2^2 f_0}}{\alpha_0}$	×2	0	$f_0 \ge rac{lpha_0^2(-1+x_2^2)}{8x_2^2} > 0 \ \text{and} \ lpha_0 eq 0$	Figure	Potential domination
F ₂	$\frac{2\sqrt{2f_0}x_2 + \sqrt{\alpha_0^2 - \alpha_0^2 x_2^2 + 8x_2^2 f_0}}{\alpha_0}$	×2	0	$f_0 \ge rac{lpha_0^2(-1+x_2^2)}{8x_2^2} > 0 \ \text{and} \ lpha_0 eq 0$	Figure	Potential domination

Results : Stability of critical lines F_1 and F_2

A. Moussa-T. Ouali-E.H. Tahri (UMP - FSO)

LPMR- High Energie Activities

27 octobre 2017 13 / 33

4D perturbation of Randall-Sundrum model

Perturbed metric

$$ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(t)(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$$
(4)

Perurbed Einstein's field equations

$$\delta G_{\mu\nu} = 8\pi G_N \delta S_{\mu\nu} + \kappa_5^2 \delta \Pi_{\mu\nu} - \delta E_{\mu\nu}$$
⁽⁵⁾

• We parametrize the scalar perturbations of $E_{\mu\nu}$ as an effective fluid

$$\delta E^{\mu}_{\nu} = -8\pi G_N \begin{pmatrix} -\delta\rho_E & a\delta q_{E,i} \\ -a^{-1}\delta q_E^{,i} & \frac{1}{3}\delta\rho_E \delta^i_j + \delta\pi^i_{Ej} \end{pmatrix}$$
(6)

We find

$$\delta q_E = 0 \tag{7}$$

$$\delta \rho_E = 2k^2 \delta \pi_E \tag{8}$$

A. Moussa-T. Ouali-E.H. Tahri (UMP - FSO)

LPMR- High Energie Activitie

Holographic Dark Energy (HDE)

- DGP, DGP+GB, Holographic H⁻¹DE, HRDE
- Interactions in standard cosmology and in its extended
- Dynamical System
- Singularities (Big Rip, LR, LSBR, LB, LSBB)^a

A. Bouhmadi-Lopez, A. Errahmani and T. Ouali, PRD 84, 083508 (2011)
 M. Bouhmadi-Lopez, A. Errahmani and T. Ouali, PRD 85, 083503 (2012)
 M.B-L,A.E., P. M-M and T.O. IJMP D24, 1550078 (2015)

HDGP model : $L = H^{-1}$ as the infra-red cutoff

- HDGP model $+ L = H^{-1}$, no explanation ^a of the speed up of the expansion
- HDGP+GB model + $L = H^{-1}$, yes^b
- HDGP+GB model + L = R, yes^c
- HDGP + Interaction model + $L = H^{-1}$????

- b. M. Bouhmadi-Lopez, A. Errahmani and T. Ouali, PRD 84, 083508 (2011)
- C. M. Bouhmadi-Lopez, A. Errahmani and T. Ouali, PRD 85, 083503 (2012)

a. M. Li, PLB 603, 1 (2004)

Late universe : Subject II

HDGP model : $L = H^{-1}$ as the infra-red cutoff

The modified Friedmann equation ^a

$$H^2 = \frac{1}{3M_p^2}\rho + \frac{\epsilon}{r_c}H, \qquad \rho = \rho_m + \rho_H$$

where r_c corresponds to the cross over scale, $\epsilon = \pm 1$ (self-accelerating and the normal branches)

• The holographic energy density is given by ^b

$$\rho_H = \frac{3c^2 M_p^2}{L^2}, \quad L = H^{-1}$$

- a. G. R. Dvali, G. Gabadadze, M. Porrati, PLB 485, 208 (2000).
- b. M. Bouhmadi-Lopez, A. Errahmani and T. Ouali, PRD 84, 083508 (2011)

(9)

critical points in non interacting DGP braneworld

Point	Eigenvalues	Stability	
A	$(0; -\frac{3}{2})$	Stable (see fig. 1)	
В	$(0; -\frac{3}{2})$	Stable(see fig. 1)	
с	$(\frac{3}{2}; 3(1-c^2))$	Unstable	
D	$(\frac{3}{2}; 3(1-c^2))$	Unstable	
E	$(\frac{3}{2}; 3(1-c^2))$	Unstable	
F	$(\frac{3}{2}; 3(1-c^2))$	Unstable	
		1.	

Late universe : Subject II

 $\omega_H=0,\ c^2=0.5$

critical points in the presence of interaction

Point	Eigenvalues	Stability
А	$\left(0, \frac{1}{2}(-3+\lambda_m)\right)$	Stable (see Fig. 2)
В	$\left(0, \frac{1}{2}(-3+\lambda_m)\right)$	Stable (see Fig. 2)
с	$\left(4-3c^2-\lambda_m, \frac{1}{2}(-3+\lambda_m)\right)$	Stable for $c^2 \geq rac{4-\lambda_m}{3},\lambda_m\geq 3$
D	$\left(4-3c^2-\lambda_m, \frac{1}{2}(-3+\lambda_m)\right)$	Stable for $c^2 \geq rac{4-\lambda_m}{3},\lambda_m \geq 3$
E	$\left(4-3c^2-\lambda_m, \frac{1}{2}(-3+\lambda_m)\right)$	Stable for $c^2 \geq rac{4-\lambda_m}{3}$, $\lambda_m \geq 3$
F	$\left(4-3c^2-\lambda_m, \frac{1}{2}(-3+\lambda_m)\right)$	Stable for $c^2 \geq rac{4-\lambda_m}{3},\lambda_m\geq 3$

Table II : Eigenvalues of the critical points

Late universe : Subject II

Phase space in the presence of interaction

Statistical tools and cosmology : Subject III

Confront ours predicted result to observed one

- χ^2 (SN Ia, CMB, BAO)
- Liklehood
- Markov Chaine Monte Carlo (MCMC)

The Little Sibling of the Big Rip (LSBR) model :

0.73

0.72

0.71

0.70

0.69

0.68

0.67

(i) 1σ , 2σ and 3σ contour plot of the parameter hversus Ω_m in the case of the LSBR model.

Model	Par	Best fit	$\chi^{2}_{\mathrm{tot}}^{\min}$	$\chi^{2 \ \rm red}_{\rm tot}$	AIC	ΔAIC
	Ω_m	$0.307\substack{+0.002\\-0.002}$	552.538	0.9396	558.538	0
//ebiii	h	$0.696\substack{+0.007\\-0.007}$				
	$\Omega_b h^2$	$0.0222\substack{+0.0002\\-0.0002}$				
	Ω_m	$0.298\substack{+0.004\\-0.004}$	552.995	0.9420	560.995	2.457
BR	$\omega_{\it br}$	$-1.092\substack{+0.033\\-0.033}$				
	h	$0.696\substack{+0.006\\-0.006}$				
	$\Omega_b h^2$	$0.0220\substack{+0.0002\\-0.0002}$				
	Ω_m	$0.298\substack{+0.003\\-0.003}$	553.109	0.9422	561.109	2.571
LR	Ω_{lr}	$0.07\substack{+0.002\\-0.002}$				
	h	$0.696\substack{+0.0006\\-0.0006}$				
	$\Omega_b h^2$	$0.0221\substack{+0.0002\\-0.0002}$				
	Ω_m	$0.298\substack{+0.004\\-0.004}$	553.241	0.94248	561.241	2.703
LSBR	$\Omega_{\textit{lsbr}}$	$0.175\substack{+0.006\\-0.006}$				
	h	$0.696\substack{+0.069\\-0.069}$				
	$\Omega_b h^2$	$0.0220\substack{+0.006\\-0.006}$				

◆□> ◆圖> ◆国> ◆国> 三臣

- intrication of coherents states paly a central rôle in the development of the quantum information theory (QIT)
- intrication of coherents states as a source of the QIT
- LPMR interest
 - fermionics coherents states
 - Theirs supersymetric extensions

Any Questions?

A. Moussa-T. Ouali-E.H. Tahri (UMP - FSO)

LPMR- High Energie Activities

27 octobre 2017 28 / 33

Markov Chaine Monte Carlo (MCMC)

The parameters are not any more deterministic (case of χ^2) they have a probability distribution Bayes theorem :

$p(\theta|d) \propto L(d|\theta)p(\theta)$

- $p(\theta|d)$ posterior
- $L(d|\theta)$ likelihood function
- $p(\theta)$ prior

 $\mathsf{MCMC}{=}\mathsf{Bayes}\ \mathsf{Theorem}\ +\ \mathsf{Metropolis}\ \mathsf{Algorithm}\ +\ \mathsf{Monte}\ \mathsf{Carlo}$

The Friedmann equation of the ΛCDM model is given by :

$$E^{2}(z) = \Omega_{r}(1+z)^{4} + \Omega_{m}(1+z)^{3} + (1-\Omega_{m}-\Omega_{r}).$$
 (10)

The Friedmann equation of the Big Rip ω CDM model is given by :

$$E(z)^{2} = \Omega_{r}(1+z)^{4} + \Omega_{m}(1+z)^{3} + (1-\Omega_{m}-\Omega_{r})(1+z)^{3(1+\omega_{br})}.$$
 (11)

The Friedmann equation of the Little Rip model is given by :

$$E^{2}(z) = \Omega_{r}(1+z)^{4} + \Omega_{m}(1+z)^{3} + \frac{9}{4}\Omega_{lr}^{2}\ln^{2}(1+z) \\ -3\Omega_{lr}\sqrt{1-\Omega_{m}-\Omega_{r}}\ln(1+z) + (1-\Omega_{m}-\Omega_{r}) .$$

The Friedmann equation of the Little Sabling of the Big Rip model is given by :

$$E^{2}(z) = \Omega_{r}(1+z)^{4} + \Omega_{m}(1+z)^{3}$$

$$+ (1 - \Omega_{m} - \Omega_{r}) \left[1 - \frac{\Omega_{lsbr}}{1 - \Omega_{m} - \Omega_{r}} \ln(1+z) \right]$$
(12)

Inflationary cosmology

- Large number of inflationary models which are in a good agreement with the measure of the spectral index
- Further analysis of a consistent behaviour of the spectral index versus
 - the tensor to scalar ratio
 - the running of the spectral index
- Analysis the tensor to scalar ratio versus the running of the spectral index
- might help to reduce the number of these inflationary models

- But some of these models may be ruled out by instabilities that are not apparent in the background solution
- In the perturbed universe, there are subtleties and complications that do not arise for the background dynamics.
- one needs to ensure that dark energy perturbations are stable, i.e., $c_{sx}^2 > 0$ where c_{sx} is the dark energy sound speed (the speed at which fluctuations propagate)
- For a scalar field model of dark energy, $c_{sx}^2 = 1$, follows without assumptions
- we need to impose $c_{sx}^2 > 0$ by hand, so that the dark energy fluid is effectively non-adiabatic

A. Moussa-T. Ouali-E.H. Tahri (UMP - FSO)

Dynamical system study has been found to be very useful in cosmology [31, 32].

- Difficulties with exacte analytical solution
- asymptotic behaviour of cosmological models
- Stable point of the system corresponds to ultimate fate of universe (attractors)
- attractors solution : describe our universe irrespective of initial conditions