

High Energy Physics Workshop Tanger

ESMAR Research activities

Yahya TAYALATI 27 October 2016 University Mohammed V in Rabat tayalati@cern.ch

Plan

- ESMAR
- High Energy Physics Activities
- Astro-Particles Activities
- Conclusion

ESMAR

- High Energy Physics and Astro-particules
 - ATLAS, ANTARES, KM3NeT
- Medical Physics
 - Elekta
- Theoretical Physics (M. El Baz talks)
 - ICTP
- Photonics, Phononics

Manpower

- R. Cherkaoui El Moursli, F. Fassi, Yahya Tayalati
- Souad Batlamouss
- Salah Eddine Dahbi
- Hamdaoui Hassan
- El Jerrari Hassane
- Asmae Ettahiri
- Jihad Boumaaza
- Ngair Badr-Eddine (newcomer)
- Mohamed ZAAZOUA (newcomer)

Search for heavy resonances

- > Top quarks are special
- ➤ Heavy! ⇒Very large Yukawa coupling
- ➤ Many BSM model predict enhanced coupling to 3rd generation
- \triangleright Heavy mediators (H, A, Z', g_{KK} , G_{KK}) Top partners (Vector-like quarks)

A search for top-antitop resonances using 3.2 fb⁻¹ of proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$

Ch. Andershe, M. Aoki^{so}, K. Behr^{ox}, C. Buttar^{gl}, S. Calvet^{cf}, C. Camincher^{gr}, H. Carson^{az}, J. Caudron^{ma}, S. Crépé-Renaudin^{gr}, A. Duncan^{gl}, J. Ferrando^{gl}, D. E. Ferreira de Lima^{gl,he}, F. Fassi^{ra}, O. Gabizon Shuldman^{wu}, S. Groh^{ma}, T. Heck^{ma}, Z. Idrissi^{ra}, C. Işsever^{ox}, K. Johns^{az}, A. Kilgallon^{az}, A. Kobayashi^{to}, P. Maettig^{wu}, L. Masetti^{ma}, R. Nayyar^{az}, T. Nobe^{to}, C. Pollard^{gl}, S. M. Romano Saez^{cf}, A. Schoening^{he}, D. Sosa^{he}, S. Suzuki^{so}, K. Terashi^{to}, J. Zhong^{ox}

https://cds.cern.ch/record/2010613/files/ATL-COM-PHYS-2015-294.pdf

Singel lepton ttbar resonances

- With the increase of energy and luminosity at the LHC, decay of heavy resonances associated with new physics is in the multi-TeV mass range
- Result in highly boosted very massive objects such as Top
 - Decay products of Boosted Tops collimated in direction of pT
 - Separation can be described according to ΔR ~ m/pT

Standard reconstruction methods are no longer sufficient for boosted top quarks

Many new techniques are developed to reconstruct and identify boosted tops

- Jet substructure → fatjet
- Less-isolated leptons

Singel lepton ttbar resonances

- Analysis strategy
- Top quark signature is difficult to reconstruct efficiently → Many objects
 - Adapt the event selection and reconstruction to the final configuration

Event selections:

- Resolved: standard top reconstruction with narrow jets
- Boosted: using large-cone "fatjet to reconstruct the hadronic top

Event reconstruction:

- Combined limit of boosted and resolved selection:
 - Resolved selection mainly relevant at low mtt
 - Boosted selection relevant at high mtt

Singel lepton tt

	$e+{ m jets}$	$\mu + \mathrm{jets}$
$tar{t}$	3000 ± 700	3000 ± 700
W+jets	200 ± 140	200 ± 40
Single top	190 ± 40	180 ± 40
$Z{+}\mathrm{jets}$	33 ± 12	26 ± 12
Multi-jet	130 ± 70	19 ± 11
Diboson	46 ± 11	37 ± 8
Total	3700 ± 800	3400 ± 800
Data	3352	3074

Background estimated from MC simulation, except

- W+jets normalization from data (charge asymmetry)
- Multijet estimated from data (matrix method)

Perform likelihood fit of m_{tt}^{reco}

- \triangleright Most significant excess <1σ ⇒ Set limit
- > Z'_{TC2} benchmark with $\Gamma/m = 1.2\%$ and 3%
- > Assume no interference with SM

Singel lepton ttbar resonances

 Expected and observed upper cross section limits times ttbar branching ratio (95 % C.L.)

Search for WZ→ IvII resonances

- Resonant WZ production search in fully leptonic final states (electrons and muons) using 36.1 fb −1 of data collected at 13 TeV center of mass energy by the ATLAS detector at the LHC during the 2015 and 2016 runs.
- Aim of this analysis: fully leptonic WZ decay (e,μ) in exclusive qq̄ and VBS/VBF production modes.
- Clean signature:
 - → 3 high p T and isolated leptons.
 - → Missing transverse energy.
- Backgrounds: WZ SM (dominant), ZZ, Z+jets, Z+γ, VVV and Top.
- Two benchmark models:
 - → Heavy Vector Triplets (HVT).
 - → Georgi-Machacek (GM) Higgs Triplet Model H +5.

CutFlow

Background

90% Real leptons: Estimated using MC

- WZ (QCD Sherpa 2.2.2, EWK Sherpa 2.1).
- ZZ (Powheg (qq) and Sherpa (gg)).
- ttbarV (V=Z,W) (MadGraphPythia).
- tZ (MadGraphPythia).
- VVV (V=Z,W) (Sherpa).

10% Fake leptons: Estimated using Matrix Method

- Z+jets (Sherpa 2.2.1).
- Top (Single top, ttbar) (PowhegPythia).
- Zγ (Sherpa).

Results

Collaboration with CEA, Saclay

Development of a track-based algorithm for MET TST systematic uncertainties

- ➤ Missing transverse energy (MET) is a key observable for many analyses
 - Precision measurements and searches
- ➤ MET relies on full event information
 - Objects need to be reconstructed/calibrated
 - Any overlap needs to be removed
 - \circ MET reconstructed as $\sum_{\text{objects}} \mathbf{p}_{\text{T}}$

➤ Soft Term (ST):

oContribution to MET from all constituents that are not associated to hard objects

Calorimeter Soft Term (CST): ➤ Calorimeter Soft Term (CST):

oST built with calorimeter clusters as constituents

➤ Track Soft Term (TST):

oST built with tracks as constituent

➤ A framework for deriving a track-based TST systematic uncertainties in being developed using release 21

Performance studies of the sFCal granularity at HL-LHC

400

600

X [mm]

- $3.2 < |\eta| < 4.9$.
- FCal1 (Cu/LAr),
- FCal2 (W/LAr)
- FCal3 (W/Lar).

LAr annular gaps (FCal1: 0.27mm; FCal2: 0.37mm; FCal3: 0.5mm)

400

200

-200

-400

-600

Electrons:

φ Pointing resolution:

Pions:

Tanger, 27 October 2017

Implementation

- 1 Introduce new gas types in the ATLAS simulation framework
- 2 Mimic the High Threshold response of the gas we wish to emulate
- 3 Scale the TR absorption efficiency during the digitization by a TR efficiency reduction factor (TRERF)

Distributed Computing

- > Distributed Production And Analysis expert team (DPA)
 - > The responsibility of DPA team is to guarantee the smooth execution of
 - production and user analysis requests on all available computing resources
- ➤ Over 300k slots of running jobs
 - Pledges 2017: ~230k slots
- ➤ And more with opportunistic resources:
 - o HPCs
 - Provide large resources. Big potential, but more effort needed.
 - Commercial and Private clouds
 - ATLAS@Home
- > Jobs:

Tanger, 27 October 2017

• Large mixture of highly diverse type of jobs: multi-core, single-core, multi-core high memory...

ATLAS/Shifts

\sim 1	ı	\mathbf{c}
	200	•
\sim	lass	\sim

Task / Year	2011	2012	2013	Total
ADCoS Senior shifts			4.68	4.68
ADCoS Trainee shifts				0.00
Simulation and Digitization	11.50	11 50	1.50	24 50

Class 2

System	Activity	Task	2017	Total
TRT	Detector Operation	TRT Offline Shifter	7.00	7.00
Total			7.00	7.00

Class 2

System	Activity	Task	2011	2012	2013	2014	2015	2016	2017	Total
General Tasks	Computing/Software	ADCoS Trainee shifts								0.00
General Tasks	Computing/Software	Distributed Analysis Trainee Shifts	3.50							3.50
General Tasks	Computing/Software	Distributed Analysis Shifts 1st level	10.00	51.00	69.00	40.00	95.00	76.00	41.00	382.00
General Tasks	Computing/Software	Distributed Analysis Shifts 2nd level	3.50			23.00	3.00	2.50		32.00
Total			17.00	51.00	69.00	63.00	98.00	78.50	41.00	417.50

Class 3

System	Activity	Task	2011	2012	2013	2014	2015	2016	2017	Total
General Tasks	Computing/Software	Computing Shifts Organization			0.10	0.10	0.10	0.15	0.20	0.65
General Tasks	Computing/Software	Grid Data Processing & Analysis				0.05	0.10	0.25	0.25	0.65
General Tasks	Computing/Software	Group activities			0.05					0.05
Total					0.15	0.15	0.20	0.40	0.45	1.35

ANTARES/KM3NeT

Search for Magnetic Monopoles

$$\alpha = \frac{t\chi^2}{1.3 + (0.04 \times (Nhit - 5))^2}$$

90% C.L, Feldman-Cousins formula :

$$S_{90\%}(cm^{-2}.s^{-1}.sr^{-1}) = \frac{\bar{\mu}_{90}(n_b)}{S_{eff}(cm^2.sr) \times T(s)}$$

Search for Monopoles

- ➤ No significant signal observed above the atmospheric background (muons and neutrinos) expectation.
- New limits on flux have been established (red graph) for relativistic monopoles.
- Paper published in JHEP: https://link.springer.com/article/10.1007/JHEP07(2017)054

ANTARES/KM3NeT

Yahya Tayalati

Yahya TAYALATI, Tanger, 27 October 2017 shift : ksystrayon On Desktop 1

Medical Physics

Samir Didi : Simulation de Linac Elekta Synergy

Recherche

Physique Médicale (Curiethérapie)

Conclusion

HEP: ATLAS

Astroparticles: ANTARES/KM3NeT