W+4gamma signature from light charged Higgs boson at the LHC Run-II

Rachid Benbrik

Cadi Ayyad University Marrakech, Morocco. Talk given at High Energy Physics Workshop in Morocco.

> Phys.Lett. B774 (2017) 591-598 Eur.Phys.J. C77 (2017) no.9, 621 Work in progress

> > Oct.27-28, 2017

Outline

HEP Activities in Safi

- 1. Introduction
- 2. Two Higgs doublet model: potential and Yukawa couplings
- 3. Charged Higgs boson decays
- 4. H^{\pm} production mechanisms at the LHC
- 5. W+4 γ signatures from light H^{\pm}
- 6. Conclusions

HEP Activities: Safi team

- ► Rachid Benbrik
- ► Abdessamad Rouchad
- Souad Semlali
- ▶ Hicham Harouiz
- Yahya Mekaoui
- Abdeljalil Habjia
- Abdekarim Mahfoud
- ► Khadija El Menaour

Expertise

- Extended Higgs scalars
- ► Bluiding Models
- ► Higgs Phenomelongies
- B-Physics
- ► High order corrections

HEP Activities: Collaborations and projects

Local groups:

- Tanger
- Marrakech
- Agadir
- Beni-Mellal

International groups:

- Europe: Spain, Portugal, France, UK, Sweden
- Aisa: China, Taiwan, India

Projects:

- ► H2020
- Moroccan ministry of higher Education and scientific research
- Fellowship PIFI program

Evidence for a Standard Model like Higgs boson

- ▶ In the summer of 2012 an SM-like particle (h) was found at the LHC.
- ➤ So far its properties agree with SM predictions at tthe 20% level.
- lacktriangle Its mass derived from the $\gamma\gamma$ and ZZ channels is

Beyond the SM

- ► The SM-like limit exists in various models with extra neutral Higgs.
- Any extended Higgs sector a Charged Higgs would be a signal.
- Such scalars appear in multi-Higgs doublet (MHDM).
- ▶ From EWO are in agreement with SM with $\rho = 1$.
- in this talk I will focus on a very popular model such as 2HDM.

Potential with sotf Z_2 -violating

$$V(\Phi_{1}, \Phi_{2}) = -\frac{1}{2} \left\{ m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} + \left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right] \right\}$$

$$+ \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2})$$

$$+ \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \left[\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.} \right].$$
 (1)

Apart from the term m_{12}^2 , this potential exhibits a Z_2 symmetry,

$$(\Phi_1, \Phi_2) \leftrightarrow (\Phi_1, -\Phi_2)$$
 or $(\Phi_1, \Phi_2) \leftrightarrow (-\Phi_1, \Phi_2)$. (2)

The most general potential contains in addition two more quartic terms, with coefficients λ_6 and λ_7 , and violates Z_2 symmetry in a hard way T.D.Lee PRD8,1226'73," JF.Gunion *et al.*The HHG".

- ▶ The parameters λ_1 – λ_4 , m_{11}^2 and m_{22}^2 are real.
- ▶ The potential (1) can lead to CP violation when λ_5 and m_{12}^2 are complex.

Mass eigenstates

We use the following decomposition of the doublets:

$$\Phi_{1} = \begin{pmatrix} \varphi_{1}^{+} \\ (v_{1} + \eta_{1} + i\chi_{1})/\sqrt{2} \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} \varphi_{2}^{+} \\ (v_{2} + \eta_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}, \quad (3)$$

Here $v_1 = \cos \beta v$, $v_2 = \sin \beta v$, $v = 2 m_W/g$, with $\tan \beta = v_2/v_1$. The charged Higgs bosons are the combination orthogonal to the charged Nambu–Goldstone bosons:

$$H^{\pm} = -\sin\beta\varphi_1^{\pm} + \cos\beta\varphi_2^{\pm} \tag{4}$$

and their mass is given by

$$M_{H^{\pm}}^2 = \mu^2 - \frac{v^2}{2} (\lambda_4 + \Re \lambda_5),$$
 (5)

where we define a mass parameter μ by

$$\mu^2 \equiv (v^2/2v_1v_2)\Re m_{12}^2. \tag{6}$$

Mass eigenstates and gauge couplings

With all momenta incoming, we have the $H^\mp W^\pm \phi$ gauge couplings:

$$H^{\mp}W^{\pm}h: \frac{\mp ig}{2}\cos(\beta-\alpha)(p_{\mu}-p_{\mu}^{\mp}),$$

$$H^{\mp}W^{\pm}H: \frac{\pm ig}{2}\sin(\beta-\alpha)(p_{\mu}-p_{\mu}^{\mp}),$$

$$H^{\mp}W^{\pm}A: \frac{g}{2}(p_{\mu}-p_{\mu}^{\mp}).$$
 (7)

The strict SM-like limit corresponds to $sin(\beta - \alpha) = 1$.

$$VVh: \sin(\beta - \alpha),$$
 $VVH: \cos(\beta - \alpha),$ $VVA: 0.$ (8)

$$V=W^{\pm},Z$$

Theoretical constraints

The 2HDM is subject to various theoretical constraints.

Stability or positivity of the potential:

$$V(\Phi_1, \Phi_2) > 0$$
 as $|\Phi_1|, |\Phi_2| \to \infty$. (9)

This requirement gives the following conditions on λ 's PM. Ferreira *et al* ,PLB,2005

$$\lambda_1>0\,,\;\lambda_2>0\,,\;\lambda_3+2\sqrt{\lambda_1\lambda_2}>0\,\,,\;\lambda_3+\lambda_4-|\lambda_5|>2\sqrt{\lambda_1\lambda_2}. \eqno(10)$$

- ▶ Perturbativity: satisfy $|\lambda_i| \le 8\pi$ (i = 1, ..., 5). has significant effect on $(\tan \beta, M_{H^\pm})$ plane.
- ▶ Unitarity: all $2 \rightarrow 2$ processes scattering are under control.

$$Max(Eigenvalues(M)) < 0.5$$
 (11)

Yukawa Interaction for the 2HDM T.D.Lee PRD8.1226'73

$$-\mathcal{L}_{\text{Yukawa}} = \overline{Q}_L \Phi_a F_a^D D_R + \overline{Q}_L \widetilde{\Phi}_a F_a^U U_R + \overline{L}_L \Phi_a F_a^L L_R + \text{h.c.}, \quad (12)$$

Model	d	и	ℓ
I	Φ2	Φ2	Φ ₂
П	Φ_1	Φ_2	Φ_1
Ш	$\Phi_1\&\Phi_2$	$\Phi_1\&\Phi_2$	$\Phi_1\&\Phi_2$
X	Φ_2	Φ_2	Φ_1
Υ	Φ_1	Φ_2	Φ_2

Table 1: The most popular models of the Yukawa interactions in the 2HDM.

in Type II (MSSM)

$$H^+ b ar{t}: \qquad rac{ig}{2\sqrt{2}\,m_W}\,V_{tb}[m_b(1+\gamma_5) aneta + m_t(1-\gamma_5)\coteta], \ H^- tar{b}: \qquad rac{ig}{2\sqrt{2}\,m_W}\,V_{tb}^*[m_b(1-\gamma_5) aneta + m_t(1+\gamma_5)\coteta].$$

$$H^- t ar{b}: \qquad rac{ig}{2\sqrt{2}\,\,\mathrm{max}}\,\,V_{tb}^*[m_b(1-\gamma_5) aneta+m_t(1+\gamma_5)\coteta]$$

Charged Higgs boson decays

a charged Higgs boson can decay to a fermion-antifermion pair

$$H^{+} \rightarrow c\bar{s}, \hspace{1cm} (14a)$$

 $H^{+} \rightarrow c\bar{b}, \hspace{1cm} (14b)$
 $H^{+} \rightarrow \tau^{+}\nu_{\tau}, \hspace{1cm} (14c)$
 $H^{+} \rightarrow t\bar{b}, \hspace{1cm} (14d)$

to gauge bosons,

$$H^+ \to W^+ \gamma,$$
 (15a)

$$H^+ \to W^+ Z,$$
 (15b)

or to a neutral Higgs boson and a gauge boson:

$$H^+ \to hW^+, \quad AW^+$$
 (16)

and their charge conjugates.

Light H^+ $(M_{H^\pm} < m_t)$

Figure 1: Light charged-Higgs branching ratios vs tan β .

▶ We focus on CPC case and set $M_h = 125$ GeV.

Heavy H^+ $(M_{H^\pm}>m_t)$

Figure 2: Heavy charged-Higgs branching ratios vs $\tan \beta$.

Heavy H^+ $(M_{H^\pm}>m_t)$

Figure 3: Heavy charged-Higgs branching ratios vs $\tan \beta$.

Branching ratios vs $M_{H^{\pm}}$ in Type I

Figure 4: Branching ratios of charged-Higgs as a function of $M_{H^{\pm}}$ in Type I with $\sin(\beta - \alpha) = 0.81$ and $\tan \beta = 8$.

Branching ratios vs $M_{H^{\pm}}$ in Type X

Figure 5: Branching ratios of charged-Higgs as a function of $M_{H^{\pm}}$ in Type I with $\sin(\beta - \alpha) = 0.81$ and $\tan \beta = 8$.

Production processes: Single production at the LHC

a

Figure 6: Feynman diagrams contributing in Single production at the LHC production processes.

Production processes: Single production at the LHC

Production processes: Single production at the LHC

Production processes: Pair production at the LHC

Production cross sections $pp o H^{\pm}X$

We use CTEQ6L, $\sqrt{s}=14$ TeV and $\sin(\beta-\alpha)=1$ in Types I and II.

- $g\bar{b} \rightarrow H^+\bar{t}$, (solid),
- ▶ $gg \rightarrow H^+ b\bar{t}$, (dotted),
- ▶ $gg \rightarrow H_j \rightarrow H^+W^-$, (dash-dotted).

Cross sections pp $\to H^{\pm} X$

Figure 7: Charged Higgs production cross sections in the 2HDM, at 14 TeV

Production cross sections $pp o H^{\pm}X$

We use CTEQ6L, $\sqrt{s}=14$ TeV and $\sin(\beta-\alpha)=1$ in Types I and II.

- For $\tan \beta = 1$, type-I and type-II are diffrent due to sign Yukawa.
- ▶ Models X and Y will have the same predictions except for $(\tau \nu)$.
- ▶ The bumpy structure is due to resonnance of neural Higgs.

Allowed regions in type-1

Figure 8: Allowed regions of the $[\cos(\beta-\alpha),\,\tan\beta]$ plane for the 2HDM Model I.

- H is the SM-like
- h is fermiophibic state
- $pp o H^{\pm}h$ follwoed by $H^{\pm} o W^{\pm}h$

Figure 9: The maximum of cross-sections $pp o H^\pm h$ and $H^\pm o W^\pm h$

- H is the SM-like
- h is fermiophibic state
- $pp o H^{\pm}h$ follwoed by $H^{\pm} o W^{\pm}h$

Figure 10: The maximum of Branching ratio of $h o \gamma \gamma$

- H is the SM-like
- h is fermiophibic state
- ▶ $pp \rightarrow H^{\pm}h$ follwoed by $H^{\pm} \rightarrow W^{\pm}h$

Figure 11: The maximun of XS in fb.

- H is the SM-like
- h is fermiophibic state
- ▶ $pp \rightarrow H^{\pm}h$ follwoed by $H^{\pm} \rightarrow W^{\pm}h$

Figure 12: The maximun of XS in fb.

- H is the SM-like
- h is fermiophibic state
- ▶ $pp \rightarrow H^{\pm}h$ follwoed by $H^{\pm} \rightarrow W^{\pm}h$

Figure 13: The maximun of XS in fb.

Conclusions

- Various SM like models exsist with extra Higgs scalars.
- ► A charged Higgs would be the most striking signal of a Higgs with extra doublets.
- In this talk we have analyzed type 1 2HDM by focusing on the most "natural" decay modes are $:\tau\nu$ or $W\phi$ with any neutral Higgs.
- ▶ With a reasonable cuts on the p_T^{ℓ} and p_T^{γ} , $\sigma(W + 4\gamma)$ still large.
- We therefore look forward to the ATLAS and CMS experiments testing this scenario.

Thank you!