

IFIN-HH, Bucharest, Romania Stefan cel Mare University of Suceava, Romania

Kintex-7 FPGA radiation hardness studies, test bench, firmware, error mitigation & scrubbing

LHCb Upgrade Electronics 11.02.2016

<u>Physics interpretation:</u> Florin MACIUC Mihai STRATICIUC

Software:

Andy Tanase Stephen WOTTON Lukas ARNOLD Laurentiu DUMITRU

Hardware:

Lucian COJOCARIU Vlad PLACINTA Ovidiu HUTANU

- Introduction
- Setup for irradiation
 - ✓ Hardware
 - Thinning results
 - ✓ GUI
 - \checkmark Configuration file
- Heavy ions irradiation
 Results
- > New K7 firmware
 - Scrubbing, mitigation
- Conclusion & Future Work

Introduction

- The RICH photodetectors will be redesign to work at a trigger rate of 40 MHz.
- The Digital Board is intended to be designed is an SRAM based FPGA from KINTEX-7 family.
- > Device considered for the DB: XC7K70T-FBG676
- > Device Under Test: XC7K70T-FBG484C6

Elementary cell

RICH1

Test bench status

- Hardware: 7 fully assembled FPGA boards; 4 power supply modules tested on active loads; 2 DAQ boards; 2 Nexys3 dev. board; communication and power supply cables.
- Software: GUI for FPGA power consumption monitoring; GUI for SEU rate reading from the DUT error counters, configuration files for Nexys3 dev. board and KINTEX-7; DUT internal scrubbing using SEM IP core.
- Work is in progress to finalize a number of firmware versions for the KINTEX-7 evaluation under radiation.
- In the ongoing irradiation campaign plans are made to use mitigation and scrubbing techniques.

The setup architecture for KINTEX7 irradiation

03/22

FPGA power supply monitoring system

USU

DAQ for FPGA power consumption monitoring

DAQ system GUI

- > A custom DAQ system monitors 4 power of the Kintex-7 FPGA.
- > Data are displayed to a GUI and saved into ASCII file.
- The FPGA board power supply is automatically cutoff when monitored parameters excide the user defined threshold.

FPGA Configuration file

<u>The shift register is instantiated</u> <u>multiple times to cover most</u> <u>of available FPGA surface</u>.

The VHDL software architecture implemented by Lukas Arnold.

07/22

LabVIEW GUI for SEU counting

> The GUI is designed to drop date into ASCII file.

IFIN-HH

USU

For offline test the KINTEX7 fault injector starts with one system clock earlier than the error counter implemented locally on NEXYS3.

08/22

- The NEXYS3 dev. board sends data to PC over an virtual RS232 COM port with a baud rate of 19.2 kbps and the KINTEX-7 internal errors counters content (48 bits) is read at every 3.7 ms.
- > All cable in irradiation setup are shielded.

Legnaro irradiation with Oxygen and Fluorine ions

Vacuum vessel in open position

Kintex-7 board residing on target support

Irradiation with heavy ions (Florin's talk)

- > Oxygen A=18 beam at 126 MeV and Fluorine A=19 at 118 MeV.
- > LET or stopping power in range of 3.5-7 MeV cm^2/mg for $0^0 45^0$ with respect to the beam.
 - > Intermediate fluency of few thousand to hundreds ions per cm^2 .
- First measurement revealed a lot of SEU in few FPGA running seconds, and no difference was observed in the number of errors outcoming from simple, triple as well quintuple voted logic.
- We decrease the beam fluency to tens of ions per cm²/s as well as the flip-flop occupancy on FPGA to 1-2 %. New SEU rate corresponds to one per few tens of seconds.

Results (Florin's talk)

Cross-section of SEU at various LET values for Oxygen and Fluorine beams,

 Lack of scrubbing and unefficient mitigation technique led to more than 4 orders of magnitude difference between our values comparing to literature similar measurements.

Results

Current consumption variation:

- 1) device unprogrammed;
- 2) firmware download in FPGA;
- 3) operation under radiation.

SEU counting:

- 1-2) Kintex-7 configuration,
- 3) data taking;
- 4) configuration is corrupted.

Results

 SEU rate certainly will decreased with the using of well implemented mitigation technique as well as FPGA configuration memory (CRAM) scrubbing.

- Unfortunately, the device vulnerability to SEL for low LET value $(3.5 MeV cm^2/mg)$ can not be overcome.
- Multiple FPGA power cycles were required during tests.

 In literature, similar tests on XC7K325T-1FBG900C Kintex-7 part highlighted a threshold of 15 MeV cm²/mg for the stopping power (it is no space grade device).

- The basic concept was to implement a number of firmware versions for the DUT testing by keeping the logic architecture as simple as possible.
- Each firmware is designed for testing specific FPGA resources like: SLR32, flip-flops and BRAM.
- > We used the TMR as basic mitigation technique.
- Every version of firmware is governed by SEM IP core to ensure a better DUT evaluation during irradiation test.
- Routing constrains were used to place de logic on well defined FPGA dice region.
- A blind scrubbing procedure is implemented to be triggered in case of SEM IP core crush or MBU on single CRAM frame.
- SEM IP core: <u>www.xilinx.com/products/intellectual-property/sem.html</u>
- SLR32: SLICEM slice look-up tables (LUT) configured as shift-register
- BRAM: FPGA Block RAM
- CRAM: FPGA Configuration Memory
- MBU: Multiple-Bit Upset

16/22

New K7 firmware

- SLR32 and flip- flops radiation tolerance will be tested using single and triple voted logic configuration.
- BRAM contents will be downloaded trough a separate UART at every half a second during irradiation procedure and stored in ASCII files for later analysis.
 - UART: Universal Asynchronous Receiver/Transmitter interface

IFIN-HH

USU

USU

IFIN-HH

SEM IP core GUI recently implemented

PlanAhead Design Tool

FirmwareShift Registers testing	Notes
1: Single voted Shift Registers with SLR32 plus SEM IP core	v
2: TMR Shift Registers with SLR32 plus SEM IP core	v
3: Single voted Shift Registers with FD plus SEM IP core	ν
4: TMR shift Registers with FD plus SEM IP core	ν
BRAM testing	
5: Single voted BRAM	v
6: TMR BRAM	ν
7: Single voted BRAM plus SEM IP core	in progress
8: TMR BRAM plus SEM IP core	in progress

By default the FPGA configuration memory (CRAM) will be tested under radiation along with above firmware versions.

Upcoming versions of firmware take into consideration to be implemented:

Firmware_1: FPGA I/O banks testing

Shift Registers testing

Firmware_2: Single voted Shift Registers with SLR32

Firmware_3: TMR Shift Registers with SLR32

Firmware_4: Single voted Shift Registers with FD

Firmware_5: TMR Shift Registers with FD

Firmware_6: Shift Registers with Fault Injector for offline tests

BRAM testing

Firmware_7: BRAM with Fault Injector for offline tests

□ A new LabVIEW GUI embeds:

- ✓ SEU/SET counters readout;
- Impact batch mode;

IFIN-HH

USU

- ✓ SEM IP core user interface.
- > The LabVIEW GUI features:
 - $\circ~$ Reconfigure the FPGA in about 1s;
 - Verify the content of configuration memory in about 2s;
 - Save the readback data in to a binary file for later analyses;
 - Read the internal FPGA temperature through JTAG interface;
 - o It has SEM IP core control / status commands;
 - Trigger blind scrubbing procedure.

20/22

New GUI for SEU/SET readout and FPGA/SEM IP control

IFIN-HH

USU

Conclusion & Future work

- > Heavy ions irradiation proved the device to be unstable, unreliable and sensible even at low LET value ($3.5 MeV cm^2/mg$).
- New firmware: for NEXYS3 is finalized, while for the KINTEX-7 several versions of firmware are still under development. This time we will have a better control and debugging expertise on K7 behavior during tests. As firmware features we added SEM IP core and TMR.
- New GUI: embedding the SEM IP control / status commands as well as Impact batch mode for blind scrubbing and FPGA read back.
- At the end of March we will be ready to irradiate KINTEX-7 at Krakow or Legnaro, depending on facilities availability.
- > We intended to use 3 board with *"standard" FPGA chips for proton irradiation.*
- Other 4 board assembled with thinned FPGA dices are reserved for heavy ion irradiation at Legnaro or/and Louvain.

Fig. 3. Flip-flop memory cell SEU event Weibull curve. $L_{th}=0.6$ [MeV-cm²/mg], $\sigma_{sat}=3.0e-8$ [cm²/bit], W=58.4 [MeV-cm²/mg], S=1.74.

Results from Sandia group associates of Xilinx

D. S. Lee, M. Wirthlin, G. Swift, and A. C. Le, "Single-Event Characterization of the 28 nm Xilinx Kintex-7 Field-Programmable Gate Array under Heavy Ion Irradiation," *Radiation Effects Data Workshop (REDW)*, pp. 1-5, 2014