Vacuum system MEDICIS

Jose A. Ferreira

MEDICIS Vacuum WP

Scope:

- Vacuum system of MEDICIS facility including (design, procurement and installation):
 - Gas recuperation system
 - Pumping system (turbo and primaries)
 - Ancillary lines
 - Controls
- > Excluded:
 - □ Vacuum chambers, 3D integration and compressed air supply

MEDICIS Vacuum Specification

Pressure requirement:

- ≈10⁻⁶ mbar frontend
- ≈10⁻⁷ mbar in separator and experiment
- Primary vacuum tightness <2·10⁻¹⁰ mbar·l/s
- Maximum gas loads:
 - 10⁻⁴ mbar·l/s frontend (24h)
 - 10⁻⁵ mbar·l/s separator (24h)

Radioactive gas recovery system:

All ancillary lines leak tight <10⁻⁵ mbar·l/s (including backing lines and exhaust)

Proposed layout

Gas recuperation system

- All ancillary lines under vacuum except accumulation tank
- Design for 30 venting/year
- Backing and roughing pumps dry or oil?
 - Oil → Filters
 radioactive
 contamination, but
 no treated waste
 and spill risk
 - □ Dry → No maintenance but higher radiation on exhaust
- Emptying should be interlocked by ventilation system

Equipment (Turbopumps)

TURBOVAC 1000

- ↑ Good experience in ISOLDE frontend with no maintenance
- ↑ Air cooled
- ↑ Mechanical bearings (no affected by magnetic fields)
- Recent experience in LINAC2 no satisfactory. Sensible to backing pressure

HiPace 700

- Good experience at CERN
- ↑ Air cooled
- ↓ Hybrid bearings (affected by magnetic fields >6mT)
- Maintenance required each 4 years

Equipment (Primary pumping)

DuoLine 35M

- † Hermetic pump (tightness 1e-6 mbar-l/s)
- ↑ Magnetic motor coupling (reduced risk of oil spill)
- Very good ultimate pressure 2e-3 mbar
- Oil needs to be replaced each year (contamination risk and waste)

ACP28

- † Hermetic pump (tightness 5e-7 mbar-l/s)
- ↑ No oil in contact with vacuum
- ↑ Reduced maintenance
- ↓ Ultimate pressure <3e-2 mbar</p>
- No contamination "filter"

Integration: First drawings

Open questions

- Type, size and number of flanges available
- 3D integration of vacuum system (sector valves, volumes, etc.)
- Oil primary pumps / dry pumps (waste vs exhaust dose rate)
- VSC alarms supplied and received
 - → Fix final layout (before procurement)

Procurement before end of June 2016 (installation end 2016)

Cost estimate

Vacuum system

Item	#	Cost/each	Cost sum
		(CHF)	(CHF)
Turbo-pump (Leybold 1000)	2	18858	37716
Roughing Pump (Dry ACP28)	2	10000	20000
Sector valve (S10 Elastomer Gate Valves)	4	5000	20000
DN63 Angle valve KF	1	1000	10000
DN160 S10 Gate valve (O-ring)	2	7000	14000
Venting valve (DN16 KF)	9	500	4500
Pirani gauge	7	1000	7000
Penning gauge	7	1000	7000
TPG300	3	5000	15000
Total Material cost	_	_	<u>135216</u>

Cost estimate

Exhaust system

Item	#	Cost/each	Cost sum
		(CHF)	(CHF)
Roughing pump	1	10000	10000
Membrane pump	1	10000	10000
Angle valve (DN63 KF)	6	1000	6000
By-pass valve	1	1000	10000
Piezo gauge	1	1000	1000
Pressostat	1	1000	1000
Thermocouple	1	1000	1000
Filter (0.5m3)	1	5000	5000
Tank (St.St 304 3m3 Dia:1700 H:3040)	1	5000	5000
Total Material cost	_		40000

Cost estimate

Vacuum controls

Item	Cost (CHF)
Material (controllers, etc.)	85800
Cabling	20600
FSU	21000
PJAS	39600
Total cost	<u>167000</u>

Total cost 345 kCHF (better estimate when layout frozen)

Future operational needs

- Dedicated leak detector (contaminated) with modified exhaust for leak testing
- □ Spares: one turbopump, one primary pump, one diaphragm pump.
- □ Training of MEDICIS operators (regular venting and pumping operations) → ISOLDE op?
- □ VSC Piquet Service required?

Conclusion

- Open questions to be solved end of June 2016
- Procurement installation end 2016 beginning 2017.
- □ Total cost vacuum system: 345 kCHF
- Manpower 0,5 FTE
- Not included in vacuum WP: vacuum chambers and integration

