

Isotope Separator Magnet Refurbishment

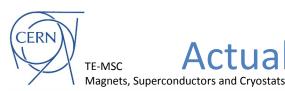
Roberto Lopez TE-MSC-MNC 02-03.03.2016

Visit

March 2015 (visit report EDMS 1492883):

- General aspect of the magnet is good but most part of it is hidden inside the concrete blocks

Normal entrance side



35.5° exit side

Magnet parameters

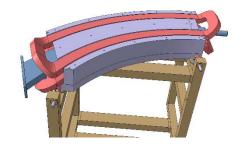
Magnets, Superconductors and Cryostats

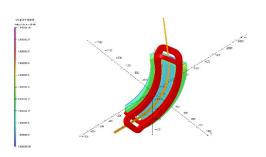
Magnet parameters for Lisol	Values	Units
Magnet name	PXMDSDBHCC	
Aperture width	200	mm
Aperture height	55	mm
Iron length	1385	mm
Total length	1500	mm
Weight	1200	Kg
Cooling system	Combined (air and water)	
Deflexion	55	degrees
Curvature radius	1500	mm
Air coil turns/pole	90	
Water coil turns/pole	10	
Coils powering	Parallel	
Magnet resistance (at 20°C)	0.093	Ω
Magnet inductance	~272	mH
RMS Current	266	Α
Voltage	25	V
Power	6.6	kW
Magnet modification for MEDICIS	Values	Units
Coils powering	Series	
Magnet resistance (at 20°C)	0.372	Ω
RMS Current	120	Α
Voltage	40	V
Power	5	kW

Actual status / remaining work

Magnet:

- Removed from the concrete blocks
- Shipment to Meyrin NormaLam workshop (bldg. 181)
- Dismantling, refurbishment, modifications and assembly
- Magnetic measurements
- Installation and commissioning




- Magnet and support drawings without the laser window
- Magnet drawings with the laser window
- New or modified vacuum chamber

Magnetic simulations

- 3D model without the laser window
- 3D model with the laser window yoke modification

Refurbishment

Work to be performed: (Bldg. 181 or 290)

- Reception radio protection inspection
- Reception electrical and hydraulic tests (3 days)
- Dismantling (1 day)
- Cleaning and shimming of the coils (2-3 days)
- Return yoke modification (2-5 days depending the RP status)
- Adjustment of the magnetic field quality following the yoke modification
- Assembly (1-2 days)
- Water manifold (1-5 days depending of its availability)
- Final certification (1-2 days)
- Commissioning (1-2 days)

Cost:

- Material: Small furniture 5kCHF
- FSUs: 2 technicians for 3 weeks 15kCHF
- FTEy Staff: 0.15 (2015-2016)

Planning

Reception at CERN: Middle of March

Reception tests: End of March

Opening and refurbishment: End of April

Following points depend of the vacuum chamber

Simulations and drawings: 1 month

Modifications: 2 weeks

Certification tests: 2 days

Magnetic measurements: 1 week

Remarks

As we don't know the available free space between the coils, the drawings for the laser pipe integration cannot be finalized until the magnet is opened.

The re-assembly after the magnetic modification can only start after the delivery of the vacuum chamber.

We have to finalize which type of alignment is needed.

In terms of resources the required modification of the magnet are feasible within the summer depending of the availability of the different items.