SUSY measurements with ATLAS detector

Michele Consonni

Laboratoire d'Annecy-le-Vieux de Physique des Particules

Introduction

Why supersymmetric models?

- They solve the hierarchy problem
- They explain the amount of observed cosmological dark matter
- They are expected to appear at the TeV scale
- ... But they have a wide spectrum of new, unobserved particles

Outline

To claim the discovery of supersymmetries:

- 1. Observe beyond-SM events
- 2. Measure the masses of the new observed particles
- 3. Fit measurements with constrained models (mSUGRA, GMSB,...)

In R-parity conserving models:

- B and L violating terms are removed
- Sparticles are produced in pairs
- Tipically \tilde{g} 's and \tilde{q} 's
- Each sparticle decays through one or more steps in LSP, giving high p_T jets
- LSP is stable and in most cases weakly interacting
 - $\Rightarrow E_T^{miss}$ signature

How to prove that SM is violated

Build discriminating variable

$$M_{eff} = \sum_{jet=1}^{4} |\vec{p}_T| + E_T^{miss}$$

- Knowledge of background sources
 - Irreducibles

$$\begin{array}{rccccccc} Z+Nj & \to & \nu\nu+Nj \\ W+Nj & \to & l\nu+Nj \\ t\bar{t} & \to & b\bar{b}+jj+l\nu \end{array}$$

- Reducibles

QCD events with fake
$$E_T^{miss}$$

How to prove that SM is violated

Build discriminating variable

$$M_{eff} = \sum_{jet=1}^{4} |\vec{p}_T| + E_T^{miss}$$

- Knowledge of background sources
 - Irreducibles

$$\begin{array}{rcccccc} Z+Nj & \to & \nu\nu+Nj \\ W+Nj & \to & l\nu+Nj \\ t\bar{t} & \to & b\bar{b}+jj+l\nu \end{array}$$

- Reducibles

QCD events with fake
$$E_T^{miss}$$

D. Tovey, SN-ATLAS-2002-020

E_T^{miss} : detector performances

To keep under control QCD background it is mandatory a good understanding of E_T^{miss}

- Full coverage $|\eta|<5$

EM	Pb/LAr	$ \eta < 3.2$
HAD	Fe/Scintillator	$ \eta < 1.7$
HAD	Cu/LAr	$1.7 < \eta < 3.2$
FWD	Cu/LAr	$3 < \eta < 5$

- $\vec{E}_T^{miss} = -\sum_{\text{visible}} \vec{E}_T$
- $\Rightarrow E_T^{miss}$ resolution is dominated by calorimeter:

 $\sigma(E_T^{miss}) \propto \sqrt{\sum_{\text{calo}} E_T}$

E_T^{miss} : detector performances

To keep under control QCD background it is mandatory a good understanding of E_T^{miss}

- Full coverage $|\eta|<5$

EM	Pb/LAr	$ \eta < 3.2$
HAD	Fe/Scintillator	$ \eta < 1.7$
HAD	Cu/LAr	$1.7 < \eta < 3.2$
FWD	Cu/LAr	$3 < \eta < 5$

- $\vec{E}_T^{miss} = -\sum_{\text{visible}} \vec{E}_T$
- $\Rightarrow E_T^{miss}$ resolution is dominated by calorimeter:

$$\sigma(E_T^{miss}) \propto \sqrt{\sum_{\rm calo} E_T}$$

E_T^{miss} : in situ calibration

• $\tau \tau$ invariant mass reconstruction in

$$Z \to \tau_1 \tau_2 \to l \ \nu_1 \ j \ \nu_2$$
$$\nu_1 = \nu_\tau + \nu_l$$
$$\nu_2 = \nu_\tau$$

 Neutrino energies are obtained by solving the system

$$E_T^{miss}_{x,y} = (E(\nu_1)\hat{\nu}_1)_{x,y} + (E(\nu_2)\hat{\nu}_2)_{x,y}$$

- That can be solved provided that
 - Neutrino directions are known (collinear approximation: $\hat{\nu}_{1,2} = \hat{l}, \hat{j}$)
 - $\det = |\sin \Delta \varphi_{lj}| \neq 0$
- \Rightarrow Four-momenta of $u_{1,2}$ can be reconstructed
- \Rightarrow Four-momenta of $au_{1,2}$ can be reconstructed

- Expected 9000 events for 10 fb⁻¹ in mass bin
- With about 20-30% of background
 - $W + j \rightarrow l\nu + j$
 - $t\bar{t}$ (semi-leptonic)
 - $b\overline{b}$ (semi-leptonic, not yet studied)

E_T^{miss} : in situ calibration

• $\tau \tau$ invariant mass reconstruction in

$$Z \to \tau_1 \tau_2 \to l \ \nu_1 \ j \ \nu_2$$
$$\nu_1 = \nu_\tau + \nu_l$$
$$\nu_2 = \nu_\tau$$

 Neutrino energies are obtained by solving the system

$$E_T^{miss}_{x,y} = (E(\nu_1)\hat{\nu}_1)_{x,y} + (E(\nu_2)\hat{\nu}_2)_{x,y}$$

- That can be solved provided that
 - Neutrino directions are known (collinear approximation: $\hat{\nu}_{1,2} = \hat{l}, \hat{j}$)
 - det = $|\sin \Delta \varphi_{lj}| \neq 0$
- \Rightarrow Four-momenta of $u_{1,2}$ can be reconstructed
- \Rightarrow Four-momenta of $au_{1,2}$ can be reconstructed

Fake E_T^{miss}

Detector *mistakes* can add tails to the gaussian resolution on E_T^{miss}

- Electronic and pile-up noise:
 - Accurate mapping of hot calorimeter cells will be needed
 - The study of *minimum-bias* events and the tuning of their simulation will be the goal with first data
- Fake muons (e.g. from cosmics)
- Mismeasured jets:
 - Jets in cracks
 - Punchthroughs

F. Paige, ATLAS Susy WG, 05/2006

Fake E_T^{miss}

Detector *mistakes* can add tails to the gaussian resolution on E_T^{miss}

- Electronic and pile-up noise:
 - Accurate mapping of hot calorimeter cells will be needed
 - The study of *minimum-bias* events and the tuning of their simulation will be the goal with first data
- Fake muons (e.g. from cosmics)
- Mismeasured jets:
 - Jets in cracks
 - Punchthroughs

F. Paige, ATLAS Susy WG, 05/2006

Fake E_T^{miss} rejection

Mismeasured jets example

- In a di-jet event: the hardest jet is usually opposite to \vec{E}_T^{miss} in xy plane
- Events with one jet in a crack have $\varphi_{\vec{j}} \sim \varphi_{\vec{E}_T^{miss}}$
- \Rightarrow Isolation of \vec{E}_T^{miss} contribute to suppress reducible backgrounds

Mass measurements of SUSY particles

- Two LSP escaping the detector
- \Rightarrow No resonances reconstruction
 - Mass informations can be taken only from invariant mass endpoints
 - Search for signatures with leptons or *b*-jets:

-
$$\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 l l$$

-
$$\tilde{\chi}_2^0 \rightarrow \tilde{l}l \rightarrow \tilde{\chi}_1^0 ll$$

- $\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 Z \rightarrow \tilde{\chi}^0_1 ll$
- $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h \rightarrow \tilde{\chi}_1^0 b b$
- Here examples for Point *SPS1a*:

$$(\ m_0 = 100 \ {
m GeV}, \ m_{1/2} = 250 \ {
m GeV}, \ A = -100 \ {
m GeV}, \ aneta = 10, \ \mu > 0 \)$$

Dilepton signatures

- Three-body decay:
 - Slope at the endpoint
 - $m_{ll}^{edge}=m_{\tilde{\chi}^0_2}-m_{\tilde{\chi}^0_1}$
- Two-body decay:
 - Sharp edge

-
$$m_{ll}^{edge} = \frac{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2)(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{l}_R}^2}$$

- Use Same Flavour (SF) leptons
- Elimination of events with uncorrelated leptons: by subtraction of Different Flavour (DF) leptons event

B. K. Gjelsten *et al.*, ATL-PHYS-2004-007

More complex signatures

- Adding one jet, we can reconstruct other kinematical edges
- From 4 endpoints, we can solve 4 unknown masses
- Strong correlations between masses

Edge	Nominal Value	Fit Value	Syst. Error	Statistical
-			Energy Scale	Error
$m(ll)^{ m edge}$	77.077	77.024	0.08	0.05
$m(qll)^{ m edge}$	431.1	431.3	4.3	2.4
$m(ql)_{\min}^{ m edge}$	302.1	300.8	3.0	1.5
$m(ql)_{ m max}^{ m edge}$	380.3	379.4	3.8	1.8
$m(qll)^{\text{thres}}$	203.0	204.6	2.0	2.8
$m(bll)^{\text{thres}}$	183.1	181.1	1.8	6.3

For 100 fb⁻¹ of integrated luminosity

More complex signatures

- Adding one jet, we can reconstruct other kinematical edges
- From 4 endpoints, we can solve 4 unknown masses
- Strong correlations between masses

For 300 fb $^{-1}$ of integrated luminosity	1
---	---

	LHC	LHC+LC (0.2%)	LHC+LC (1.0%)
$\Delta m_{\tilde{\chi}_1^0}$	4.8	0.19	1.0
$\Delta m_{\tilde{l}_R}$	4.8	0.34	1.0
$\Delta m_{ ilde{\chi}_2^0}$	4.7	0.24	1.0
$\Delta m_{\tilde{q}_L}^{\Lambda_Z}$	8.7	4.9	5.1
$\Delta m_{\tilde{b}_1}$	13.2	10.5	10.6

More complex signatures

- Adding one jet, we can reconstruct other kinematical edges
- From 4 endpoints, we can solve 4 unknown masses
- Strong correlations between masses

For 300 fb^{-1} of integrated luminosity	/
--	---

	LHC	LHC+LC (0.2%)	LHC+LC (1.0%)
$\Delta m_{\tilde{\chi}_1^0}$	4.8	0.19	1.0
$\Delta m_{\tilde{l}_R}$	4.8	0.34	1.0
$\Delta m_{ ilde{\chi}_2^0}$	4.7	0.24	1.0
$\Delta m_{\tilde{q}_L}^{\lambda_Z}$	8.7	4.9	5.1
$\Delta m_{\tilde{b}_1}$	13.2	10.5	10.6

Gluino mass reconstruction

- Going on with the chain reconstruction...
- Better with \tilde{b} instead of \tilde{q}_L to suppress combinatorial background (bad jets association to ll mass)

$$\tilde{g} \to \tilde{b}b \to \tilde{\chi}_2^0 bb \; (\to \tilde{l}_R lbb) \to \tilde{\chi}_1^0 llbb$$

- In 3-body decay case, at the endpoint: $\vec{p}(\tilde{\chi}_2^0) = \left(1 \frac{m(\tilde{\chi}_1^0)}{m(ll)}\right) \vec{p}(ll)$
- In 2-body decay case, approximately true if $m_{\tilde{\chi}^0_1} \ll m(\tilde{l}_R) \ll m(\tilde{\chi}^0_2)$
- Statistical uncertainty about 4 GeV for 100 fb⁻¹

$\tau\tau$ signatures

- For large values of $\tan\beta$ there is a non-negligible mixing between the two $\tilde{\tau}$'s
- \Rightarrow Significant splitting between $m_{\tilde{\tau}_1}$ and $m_{\tilde{\tau}_2}$, enhancing $BR(\tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau)$ with respect to the other flavours
 - Statistical uncertainty about 5 GeV (for 100 fb⁻¹)
 - Challenge to control systematics to 5 GeV

Higgs searches

- If open $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h$ has generally a substantial branching ratio
- A resonance may be reconstructed
- May provide a Higgs discovery mode
- $BR(h \rightarrow bb)$ enhanced by large $\tan \beta$ effects
- If visible *ll* channel is still the most powerful for mass measurements

Higgs searches

- Case $m_{\tilde{l}} < m_{\tilde{\chi}^0_2}$ with $\Delta > m_h$
- About 20% of SUSY events contains one h
- Selection cuts:
 - $E_T^{miss} > 300 \, {\rm GeV}$
 - 2 *b*-jets with $p_T > 50~{\rm GeV}$
 - Veto on $\mathbf{3}^{rd}$ jet with $p_T > 50~\mathrm{GeV}$
 - [–] 2 *non-b*-jets with $p_T > 100 \text{ GeV}$
 - Veto on leptons with $p_T > 10~{\rm GeV}$
- Fast simulation study with:
 - b-tagging efficiency: 60%
 - c-rejection: 10
 - jet-rejection: 100
- Error on m_h of order 1% (jet energy scale uncertainty)

 $L = 30~{\rm fb}^{-1}$ Signal \approx 2000 Backgroud \approx 600

- Scan of parameters
- At $\tan \beta = 50$, light Higgs production in the WMAP bulk region:

 $1/100 \lesssim \sigma_h/\sigma_{SUSY} \lesssim 1/10$

At large $\tan \beta$, the combinatorial background makes the measure challenging. For example,

$$(\ m_0=390~{
m GeV},\ m_{1/2}=325~{
m GeV},\ A=-100~{
m GeV},\ aneta=50,\ \mu>0$$
)

$$\tilde{g} \to \tilde{b}_1 b_2 \to \tilde{\chi}_2^0 b_1 b_2 \to \tilde{\chi}_1^0 h b_1 b_2 \to \tilde{\chi}_1^0 b_1^h b_2^h b_1 b_2$$

Since $m(\tilde{b}_1) - m(\tilde{\chi}_2^0) \gg m(h) \Rightarrow P_T(b_1) \gg P_T(b_1^h)$

Higgs searches

Further analysis of SUSY particle masses

- Reconstruction of m_{bbj} invariant mass
- Extraction of $\tan \beta$ and $\operatorname{sgn}(\mu)$ parameters with:
 - m(h)
 - Observed rate of $h \rightarrow b\overline{b}$ events
 - Observed rate of $Z \rightarrow l^+ l^-$ events

Fitting mSUGRA parameters

SFITTER: R. Lafaye, T. Plehn, D. Zerwas, hep-ph/0512028

Fitting mSUGRA parameters

- Minimal SUGRA example: SPS1a
- Better to exploit edges than masses, due to the non trivial correlations
- Sign of μ fixed: ${\rm sgn}(\mu)=+1$
- χ^2 to discriminate between $\operatorname{sgn}(\mu) = \pm 1$

	SPS1a	ΔLHC masses	∆LHC edges
m ₀	100	3.9	1.2
m _{1/2}	250	1.7	1.0
tanβ	10	1.1	0.9
A0	-100	33	20

- Loosening the unification criteria
- Non unified scalar masses
- Higgs sector undermined (only *h* observed)

	SPS1a	LHC	ΔLHC
m_0^{sleptons}	100	100	4.6
$m_0^{squarks}$	100	100	50
$m_{\rm H}^2$	10000	9932	42000
m _{1/2}	250	250	3.5
tanβ	10	9.82	4.3
A0	-100	-100	181

Conclusions

- New physics is expected at the TeV scale
- Supersymmetry is still one of the most attractive models
- May be discovered with few fb⁻¹
- Mass spectrum can be determined from mass edges measurements
- Higgs can be observed (and discovered) in SUSY cascades as a resonance in the bb invariant mass plot
- Provided that we control backgrounds and detector effects