

WP2: Physics and Simulation

CEA, DESY, USTRATH, IST, SOLEIL

Objectives & MS (reminder)

- Physics considerations and extensive simulations with PIC codes in order to optimize parameters of plasma, laser and electron beams for both plasma injector and plasma accelerating modules
- □ Tasks
 - Task 2.1. Coordination and Communication
 - Task 2.2. Machine model
 - Task 2.3. Start-to-end simulations and optimization
 - Task 2.4. Tolerance budget
 - Task 2.5. Final performance

Milestones

Milestone number	Milestone title	Lead beneficiary	Due Date (months)	Means of verification
MS6	M2.1 WP2 personnel in place	12 - CEA	12	Organisation and information available on Intranet
MS12	M2.2 Report defining tolerance	12 - CEA	18	published on intranet
MS13	M2.3 Simulation tools and theory set up	12 - CEA	18	Activity report
MS18	M2.4 Preliminary simulations set up	12 – CEA	24	Activity report
MS30	M2.5 Start to end Simulations	12 - CEA	36	Activity report

Interactions with other WPs

discuss and agree on injection and acceleration methods prior to start computations (WP3, WP5, ...)

□ Plasma injector

- self-injection in strong non-linear regime, optical injection, density gradient (steep or smooth), ionisation (gas mixture) ... ?
- Low divergence at exit (density/a₀ gradient) ?

Plasma acceleration

- non-linear regime with self-focusing and/or quasi-linear with external guiding?
- Low divergence at ends (density/a₀ gradient) ?

Interactions with other WPs

☐ Transfer lines

- From RF injector to plasma structure design: responsability of WP5 WP3 provides beam parameters at plasma entrance
- From the plasma structure to pilot users design: responsability of WP5 WP3 provides beam parameters at plasma exit
- From plasma injector to plasma acceleration discuss and agree on interstage principle injection/extraction system for laser beam (WP4?) beam optical properties: matching, quasiisochronous, non-dispersive and achromatic

Activities & Personnel

WP2 - Role of Institutes

Institute	contact	Personnel list	Status	Activity description	Contribution to Tasks
CEA	Alban Mosnier	Alban Mosnier	I.	optimization of laser and plasma parameters based upon	2.1 through 2.5
		Phi Nghiem	l'	PIC simulations (code = WARP)	
		PhD student	to be hired	start-to-end simulation including transfer lines (codes =	
		Post-doc	to be hired	TraceWin, Astra)	
IST	Luis Silva	Luís Silva	permanent staff	optimization of laser and plasma parameters based upon	2.1 - 2.3 - 2.4 - 2.5
		Jorge Vieira	research staff	PIC simulations (code = OSIRIS)	
		Researcher (Joana			
		Martins)	to be hired		
		Post-doc (Ujjwal Sinha)	to be hired		
USTRATH	Zeng-Ming Sheng			optimization of laser and plasma parameters based upon	
				PIC simulations, including controlled electron injection,	
				laser propagation, wakefield evolution, electron	
				acceleration and dephasing, etc (code = ?)	
	Marie-Emmanuelle				
SOLEIL	Couprie				
DESY	Jens Osterhoff			beam-driven option: use of PIC and particle simulations (codes = ?)	2.2 and 2.3 (alternate beam-driven option)
CNRS-LPGP	Brigitte Cros				2.2 - 2.3
INFN	Massimo Ferrario			optimization of laser and plasma parameters based upon PIC simulations (code = AlaDyn)	2.3
				start-to-end simulation including transfer lines (code = ?)	