Fluctuations and Correlations: New lessons from the RHIC beam energy scan

- Introduction
- Cumulants and Correlations
- Correlations in the preliminary STAR data

With Adam Bzdak and Nils Strodthoff: arXiv:1607.07375

Fluctuations and face transitions

The QCD Phase diagram

Why cumulants are useful

What we always see....

What it really means....

$$
" \mathrm{~T}_{\mathrm{c}} " \sim 160 \mathrm{MeV}
$$

Derivatives

$5^{\text {th }}$ order

T_{c}

How to measure derivatives

At $\mu=0$:

$$
\begin{gather*}
Z=\operatorname{tr} e^{-\hat{E} / T+\mu / T \hat{N}_{B}} \\
\langle E\rangle=\frac{1}{Z} \operatorname{tr} \hat{E} e^{-\hat{E} / T+\mu / T \hat{N}_{B}}=-\frac{\partial}{\partial 1 / T} \ln (Z) \\
\left\langle(\delta E)^{2}\right\rangle=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=\left(-\frac{\partial}{\partial 1 / T}\right)^{2} \ln (Z)=\left(-\frac{\partial}{\partial 1 / T}\right)\langle E\rangle \\
\left\langle(\delta E)^{n}\right\rangle=\left(-\frac{\partial}{\partial 1 / T}\right)^{n-1}\langle E\rangle
\end{gather*}
$$

Cumulants of Energy measure the temperature derivatives of the EOS
Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

Latest STAR result on net-proton cumulants

Unfolding makes huge difference in new STAR data!

Things to consider

- Fluctuations of conserved charges ?!
- Volume Fluctuations
- Net-protons different from net-baryons
- Isospin fluctuations
- "Stopping" fluctuations
- Higher cumulants probe the tails. Statistics!
- The detector "fluctuates"!
- Efficiency effects
-

From Cumulants to Correlations

Cumulants
 $$
K_{n}=\frac{\partial^{n}}{\partial \hat{\mu}^{n}} P / T^{4}
$$

$$
\begin{aligned}
& K_{2}=\langle N-\langle N\rangle\rangle^{2}=\left\langle(\delta N)^{2}\right\rangle \\
& \rho_{2}\left(p_{1}, p_{2}\right)=\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)+C_{2}\left(p_{1}, p_{2}\right), \quad \text { Correlation Function }
\end{aligned}
$$

$$
\begin{aligned}
& K_{3}=\left\langle(\delta N)^{3}\right\rangle \\
& \begin{aligned}
\rho_{3}\left(p_{1}, p_{2}, p_{3}\right)= & \left.\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right) \rho_{1}\left(p_{3}\right)+\rho_{1}\left(p_{1}\right) \underline{C_{2}\left(p_{2}, p_{3}\right.}\right)+\rho_{1}\left(p_{2}\right) \underline{C_{2}\left(p_{1}, p_{3}\right)} \\
& +\rho_{1}\left(p_{3}\right) C_{2}\left(p_{1}, p_{2}\right)+\underline{C_{3}\left(p_{1}, p_{2}, p_{3}\right)}
\end{aligned}
\end{aligned}
$$

From Cumulants to Correlations (no anti-protons)

Factorial moments:

$$
\begin{aligned}
& F_{n}=\langle N(N-1) \ldots(N-n+1)\rangle=\int d p_{1} \ldots d p_{2} \rho_{n}\left(p_{1}, \ldots, p_{n}\right) \\
& F_{1}=\int d p \rho_{1}(p)=\langle N\rangle \\
& F_{2}=\int d p_{1} d p_{2} \rho_{2}\left(p_{1}, p_{2}\right)=\langle N\rangle^{2}+C_{2} \\
& F_{3}=\int d p_{1} d p_{2} d p_{3} \rho_{3}\left(p_{1}, p_{2}, p_{3}\right)=\langle N\rangle^{3}+3\langle N\rangle C_{2}+C_{3} \\
& \text { and so on... }
\end{aligned}
$$

Integrated correlations function

$$
C_{n}=\int d p_{1} \ldots d p_{n} C_{n}\left(p_{1}, \ldots, p_{n}\right)
$$

From cumulants to correlations

$$
\begin{aligned}
& F_{1}=\int d p \rho_{1}(p)=\langle N\rangle \\
& F_{2}=\int d p_{1} d p_{2} \rho_{2}\left(p_{1}, p_{2}\right)=\langle N\rangle^{2}+C_{2} \\
& F_{3}=\int d p_{1} d p_{2} d p_{3} \rho_{3}\left(p_{1}, p_{2}, p_{3}\right)=\langle N\rangle^{3}+3\langle N\rangle C_{2}+C_{3} \\
& K_{1} \equiv\langle N\rangle=F_{1} \\
& K_{2} \equiv\left\langle(\delta N)^{2}\right\rangle=F_{1}-F_{1}^{2}+F_{2} \\
& K_{3} \equiv\left\langle(\delta N)^{3}\right\rangle=F_{1}+2 F_{1}^{3}+3 F_{2}+F_{3}-3 F_{1}\left(F_{1}+F_{2}\right)
\end{aligned}
$$

Can express correlations C_{n} in terms of cumulants K_{n}

$$
\begin{aligned}
& C_{2}=-K_{1}+K_{2} \\
& C_{3}=2 K_{1}-3 K_{2}+K_{3} \\
& C_{4}=-6 K_{1}+11 K_{2}-6 K_{3}+K_{4}
\end{aligned}
$$

Correlations near the critical point

M. Stephanov, 0809.3450, PRL 102

Scaling of Cumulants K_{n} with correlation length ξ
$K_{2} \sim \xi^{2}, K_{3} \sim \xi^{4.5}, K_{4} \sim \xi^{7}$
Cumulants from Correlations

$$
\begin{aligned}
& K_{2}=\langle N\rangle+C_{2} \\
& K_{3}=\langle N\rangle+3 C_{2}+C_{3} \\
& K_{4}=\langle N\rangle+7 C_{2}+6 C_{3}+C_{4}
\end{aligned}
$$

Consequently:

$$
C_{2} \sim \xi^{2}, C_{3} \sim \xi^{4.5}, \quad C_{4} \sim \xi^{7}
$$

Correlations C_{n} pick up the most divergent pieces of cumulants K_{n} !

Preliminary Star Data (X. Luo, PoS Cpod 2014 (019))

Significant four particle correlations!

Four particle correlation dominate K_{4} for central collisions at 7.7 GeV

$$
\begin{aligned}
& K_{2}=\langle N\rangle+C_{2} \\
& K_{3}=\langle N\rangle+3 C_{2}+C_{3} \\
& K_{4}=\langle N\rangle+7 C_{2}+6 C_{3}+C_{4}
\end{aligned}
$$

Correlations

Reduced correlation function

Reduced correlation function
$c_{k}=\frac{\int \rho_{1}\left(y_{1}\right) \cdots \rho_{1}\left(y_{k}\right) c_{k}\left(y_{1}, \ldots, y_{k}\right) d y_{1} \cdots d y_{k}}{\int \rho_{1}\left(y_{1}\right) \cdots \rho_{1}\left(y_{k}\right) d y_{1} \cdots d y_{k}}$
$C_{k}=\langle N\rangle^{k} c_{k}$

Independent sources such as resonances, cluster, $\mathrm{p}+\mathrm{p}$:
$c_{k} \sim \frac{\left\langle N_{s}\right\rangle}{\langle N\rangle^{k}} \sim \frac{1}{\langle N\rangle^{k-1}}$
For example two particle correlations:
$c_{2} \sim \frac{\text { Number of sources }}{\text { Number of all pairs }}=\frac{\text { Number of correlated pairs }}{\text { Number of all pairs }}=\frac{1}{\langle N\rangle}$

Centrality dependence

Centrality dependence

Rapidity dependence

$C_{k}(\Delta Y)=\int_{\Delta Y} d y_{1} \ldots d y_{k} \rho_{1}\left(y_{1}\right) \ldots \rho_{1}\left(y_{k}\right) c_{k}\left(y_{1}, \ldots, y_{k}\right)$
Assume: $\quad \rho_{1}(y) \simeq$ const.
short range correlations:

$$
c_{k}\left(y_{1}, \ldots, y_{k}\right) \sim \delta\left(y_{1}-y_{2}\right) \ldots \delta\left(y_{n-1}-y_{k}\right)
$$

$$
C_{k}(\Delta Y) \sim \Delta Y \rightarrow K_{k} \sim \Delta Y
$$

Long range correlations:
$c_{k}\left(y_{1}, \ldots, y_{k}\right)=$ const .

$$
C_{k}(\Delta Y) \sim(\Delta Y)^{k}
$$

Preliminary Star data are consistent with long range correlations

7.7 GeV
central

19.6 GeV central

Energy dependence

Note: anti-protons are non- negligible above 19.6 GeV

Expectation from Calculations

Sign of C_{n}

$$
\begin{aligned}
& \mathrm{C}_{2}<0 \\
& \mathrm{C}_{3}<0 \\
& \mathrm{C}_{4}>0
\end{aligned}
$$

Exclusion plots

Excluding regions of the phase diagram

$\mathrm{C}_{2}<0, \mathrm{C}_{3}<0, \mathrm{C}_{4}>0$

Ignore C_{2}

Map onto QCD phase diagram

Summary

- Fluctuations sensitive to phase structure:
- measure "derivatives" of EOS
- Cumulants contain information about correlations
- Preliminary STAR data:
- Significant four particle correlations at 7.7 and 11.5 GeV
- Dip in $\mathrm{K}_{4} / \mathrm{K}_{2}$ at 19.6 GeV is due to negative two-particle correlations
- Centrality dependence (at 7.7 GeV) indicates independent sources for $\mathrm{N}_{\text {part }}<150$ and "collective" correlations for $\mathrm{N}_{\text {part }}>200$.
- At about the same centrality three- and four particle correlations change sign!
- New dynamics????? Or trivial stuff: Volume fluctuations etc.

Summary

- Preliminary STAR data continued:
- For central 7.7 and 11.5 GeV two and three particle correlations are negative and four particle are positive.
-This would rule out a large area around the critical point
- The STAR data are still preliminary!
- Other more mundane effects may contribute
- Correlations help chasing these effects down.

It's a long road....

Happy Birthday, Peter!

