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2.  Characterizing hot matter
        a)  EOS
        b)  chemical freeze-out
3. Cold nuclear matter (with Derek Bingham)
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 Evaluating the conditional probability

 What is Bayesian statistics?

 One often assumes that

a)  Likelihood function for the observables  

b)  parameters --> observables
   i)  Markov Chain Monte Carlo (MCMC)
  ii)  Gaussian process emulator
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 Equation of State of hot matter  Scott Pratt, et al.,    PRL 114 202301 (2015)
                                PRC  89 034917 (2014)

 Observations:   particle spectrum, elliptic flow, HBT correlations
                          Au+Au at 100 GeV/n; Pb+PB at 1.38 TeV/n

 Model:

Lð~xÞ ∼
Y

i

exp f−ðzðmodÞ
i ð~xÞ − zðexpÞi Þ2=2g: ð1Þ

Here, ~x is the 14-dimensional vector describing a point in
parameter space and zi are principal components of the
observables, where each observable yi is first scaled by σi,
which describes the uncertainty one assigns to the com-
parison of the model to experiment, with σi accounting for
both experimental uncertainties and the error one might
associate with the model missing some of the physics.
Here, the uncertainties were all chosen to be 6% of each
observable. Changing this to 9% only modestly affected
the final result. The largest source of uncertainty derives
from the unknown impact of missing physics. These
shortcomings will be discussed further below.
Constraining the equation of state is the principal goal of

this study. The equation of state was chosen to be consistent
with that of a hadron gas for a temperature of 165 MeV,
which is the temperature at which the hydrodynamic
description switched to the microscopic hadronic simula-
tion. At the high-energy densities considered here, one can
neglect any small excess of baryons to antibaryons and the
equation of state can be expressed in terms of a single
variable such as the energy density ϵ. For temperatures
above 165 MeV, the speed of sound squared was para-
metrized to allow for a large range of equations of state,

c2sðϵÞ ¼ c2sðϵhÞ þ
!
1

3
− c2sðϵhÞ

"
X0xþ x2

X0xþ x2 þ X02 ;

X0 ¼ X0RcsðϵÞ
ffiffiffiffiffi
12

p
; x≡ ln ϵ=ϵh; ð2Þ

where ϵh is the energy density corresponding to
T ¼ 165 MeV. The two parameters R and X0 describe
the behavior of the speed of sound at energy densities above
ϵh. Whereas R describes how the speed of sound rises or
falls for small x, X0 describes how quickly the speed of
sound eventually approaches 1=3 at high temperature. Once
given c2sðϵÞ, thermodynamic relations provide all other
representations of the equation of state. Runs were per-
formed for 0.5 < X0 < 5, and with −0.9 < R < 2. In the
limit R → −1 the speed of sound will have a minimum
of zero.
Ten of the 14 model parameters described the initial

stress-energy tensor and flow used to describe the initial
state and instantiate the hydrodynamic calculation, with 5
separate parameters describing the initial state for each
beam energy. Three parameters varied the transverse profile
of the initial energy density at each beam energy: a weight
between two saturation pictures, a normalization for the
initial energy density, and a screening parameter. These
three parameters, along with a parameter used to vary the
initial flow, are described in [14]. The fifth parameter
describes the initial anisotropy of the stress energy tensor
and was varied so that the longitudinal pressure Tzz could
vary between zero and the pressure P. The viscosity at the

transition temperature and its temperature dependence were
described by two parameters using the same functional
form that was used in Ref. [14]. The final two parameters
varied the equation of state.
The details of both the physical model and the statistical

method are described in Ref. [14]. The calculations shown
here were based on 1200 full-model runs. Thirty observ-
ables, 15 for RHIC data and 15 for the LHC, were related
to spectra, elliptic flow, and femtoscopic source sizes.
Observables were calculated for two centralities, 20%–30%
and 0%–5% for both the RHIC and LHC cases. At each
centrality the spectral observables were the mean transverse
momenta hpti for pions, kaons, and protons, and the
yield for pions. The three femtoscopic sizes, averaged over
the experimentally analyzed momentum range, Rout, Rside,
and Rlong described the dimensions of the outgoing
phase space cloud of particles with the same momenta.
The hpti-weighted measurement of the elliptic flow,
v2 ¼ hcos 2ϕi, quantified the preference for emitting par-
ticles in the reaction plane (ϕ ¼ 0 or 180°). Because the
model used initial energy profiles that were smoothed by
considering the averaged positions of incoming nucleons
within a nucleus, rather than more realistic lumpy, or
fluctuating, initial conditions, the model had to scale up
its predictions for elliptic flow by a factor of 1.10. This
accounts for the fact that the fluctuations result in larger
initial transverse elliptic asymmetries which then lead
proportionally to larger flows. The correction factor was
quantitatively evaluated assuming a linear response in v2
to initial eccentricity and found to be minimized in the
20%–30% centrality class. The v2 analysis was confined
to the 20%–30% centrality to minimize the effect of
fluctuating initial conditions. Additionally, the pT ranges
over which v2 was integrated were limited to 100 < pT <
1040 MeV and 100 < pT < 1200 MeV at RHIC and the
LHC, respectively. This was done, in part, to avoid the
momentum ranges where the choice of viscous corrections
could have a sizable effect [15].
The first 1000 runs were chosen semirandomly through-

out the 14-dimensional parameter space according to latin
hypercube sampling. The thirty observables were then
reduced to 14 principal components, which captured over
99.9% of the variance. Identically to what was done in
Ref. [14], these principal components were interpolated
from the 1000 runs using a Gaussian process emulator
during a Markov chain Monte Carlo (MCMC) exploration
of the parameter space. This yielded a posterior sampling of
the parameter space, i.e., a sampling that was weighted by
the likelihood to reproduce the measured observables.
A sampling of 50 points in parameter space was then
chosen according to the posterior distribution and evaluated
with the full model. Real model values were then compared
to the emulated values at these 50 points to validate
the emulator in the regions of high likelihood, which are
most important in correctly determining the posterior
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of sound to 1=3 until higher energy densities and makes the
equation of state softer, can be compensated by higher
values of R, which sends the speed of sound higher just
above Tc and makes the equation of state stiffer. Fifty
values of X0 and R were then taken randomly from both the
prior, and weighted by the posterior likelihood. For each
case, the speed of sound is plotted as a function of the
temperature in Fig. (2). It is clear that the experimental
results significantly constrain the equation of state and we
also note that the RHIC and LHC data in combination
provide a better constraint than either can alone. It appears
that the speed of sound cannot fall much below the hadron
gas value, ∼0.15, for any extended range and that it must
rise with temperature. Figure 5 also shows a range of
equations of state from lattice calculations [4,5]. The
equations of state found here show a preference for being

slightly softer than those from the lattice, but the ranges
overlap.
Determining the equation of state from experiment has

proven difficult due to the intertwined links between model
parameters and numerous observables. The statistical
techniques applied here overcome these difficulties. The
resulting constraints suggest the speed of sound gradually
rises as a function of temperature from the hadron gas
value. The band of equations of state from Fig. 5 is
modestly softer than that of lattice calculations, but has
significant overlap. This analysis strengthens the supposi-
tion that the matter created in relativistic heavy ion
collisions has properties similar to that of equilibrated
matter according to lattice calculations and shows that our
model describes the dynamics of heavy ion collisions well
enough to permit the extraction the thermodynamic and
transport properties of equilibrium condensed QCD matter.

This work was supported by the National Science
Foundation’s Cyber-Enabled Discovery and Innovation
Program through Grant No. NSF-0941373 and by the
Department of Energy Office of Science through Grant
No. DE-FG02-03ER41259. The authors thank Ron Soltz
for providing the lattice data.
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FIG. 4 (color online). The posterior likelihood for the two
parameters that describe the equation of state, X0 and R, have a
preference to be along the diagonal. This shows that experiment
constrains some integrated measure of the overall stiffness of the
equation of state, i.e., a softer equation of state just above Tc is
consistent with the data if it is combined with a more rapid
stiffening at higher temperature.

FIG. 5 (color online). (a) Fifty equations of state were generated
by randomly choosing X0 and R in Eq. (2) from the prior
distribution and weighted by the posterior likelihood (b). The two
upper thick lines in each figure represent the range of lattice
equations of state shown in Refs. [4,5], and the lower thick line
shows the equation of state of a noninteracting hadron gas. This
suggests that the matter created in heavy-ion collisions at RHIC
and at the LHC has a pressure that is similar, or slightly softer, to
that expected from equilibrated matter.
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Resulting EOS
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 Chemical freeze-out  J.E. Bernhard,...,U. Heinz, arXiv:1605.0394 

 Observations:   flow,                       in Pb+PB at 1.38 TeV/n
dN

dy

����
⇡±,K±,p

 Model:  9 variable parameters including Tc

Tc = 148± 2 MeV
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 How should theorists deal with 
uncertainties from imperfections in their 
models?

“It is all too often the case that the numerical results are presented
without uncertainty estimates. Authors sometimes say that it is difficult to 
arrive at error estimates. Should this be considered an adequate reason for 
omitting them? [...] There is a broad class of papers where estimates of
theoretical uncertainties can and should be made. Papers presenting the
results of theoretical calculations are expected to include uncertainty
estimates for the calculations whenever practicable.”

 Editorial, Phys. Rev. A 040001 (2011):
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 Consider a model       xi = M(p,vi)    vi: input variables
                                                          p:  parameter set
                                                          xi: model output

Let’s assume that the model is an approximation to a theory that is exact.  Then we 
can write
                                                                       pt:  true parameter set

  U(vi)   is the unknown correction that makes the theory exact.

We can define an an ensemble of likely U’s based on the performance of the model 
by itself.

Step 1.    Optimize the model to get a best parameter set  p0.
Step 2.    Determine the statistical properties of the residuals

Step 3.    An ensemble of likely U’s is defined to satisfy

If the Um(vi) are distributed as independent and Gaussian, we arrive at a
chi-squared prescription for the parameter uncertainties.
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Usual chi-squared

 Phys.Rev. Lett. 114 122501 (2015)
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 The chi-squared error estimation fails completely for models of nuclear binding energies.

 The liquid drop model as an example:

B(Z,A) = avA� asA
2/3 � ac

Z2

A1/3
� aa

(N � Z)

2

A
� �

mod(Z, 2) + mod(N, 2)� 1

A1/2

 Least-squares + chi-square gives av = 15.59± 0.03 MeV

 The problem is that the ri’s are correlated.
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The bootstrap method to simulate the ensembles
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  A bootstrap with correlations 

 J-P. Kreiss and S.N. Lahiri, Handbook of Statistics 30 3 (2012)

 Step 1. Fourier-transform the residuals with respect to A

rq(m) = N�1/2
X

n

exp(2i⇡nim/N)ri
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 Build a likelihood function for U by the frequency-domain bootstrap.
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 Step 2.  The ensemble to sample has the same |rq| set but with arbitrary phases. 
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Is the derived error robust? 
Better models (i.e. DFT) should fall in the error band.
   

G. F. BERTSCH, B. SABBEY, AND M. UUSNÄKKI PHYSICAL REVIEW C 71, 054311 (2005)

TABLE II. Refits of various Skyrme parametrizations. The
experimental data set is even-even nuclei of the 2003 mass table [10].
The last entry give the corresponding properties of the liquid
drop model, Eq. (1), for comparison purposes. All energies are in
mega-electron-volts.

Theory r.m.s. residual av(c) as(c)

SLy4 [8] 1.7 −16.06 32.0
SkP-based [11] 1.7 −16.11 31.1
BSk4-based [12] 1.7 −16.03 29.6
Skxce-based [13] 1.5 −16.10 31.0
LD 3.1 −15.6 23.3

There may be multiple local minima in the parameter space
of the Skyrme functional, and other parametrizations in the
literature may reside in other minima. It is therefore of interest
to see what the refitting procedure produces for them. We have
carried this out for the SkP parametrization of Ref. [11], the
BSky4 of Ref. [12], and the Skxce of Ref. [13]. However, there
is an important caveat in interpreting the results. The quoted
parametrizations were generated taking different approxima-
tions for various non-Skyrme energy terms, whereas our
calculations here only vary the Skyrme parameters themselves,
keeping the same treatment of the other terms the same as in the
SLy4 calculation. Thus, our extracted r.m.s. residuals will not
be directly comparable to the quoted residuals from the original
fits. In Sec. IV below, we will explicitly examine the effect of
some of these ancillary approximations on the fit. Another
caveat is that we start from the same deformations as with
SLy4. The deformation is allowed to change in the solution
of the mean-field equations, but there could be a lower energy
state in some other well of the deformation energy landscape.

Having obtained the wave functions for the different
parametrizations, we extract the density integrals and eigen-
vectors and then apply the N = 4 linear refit. The results are
shown in Table II. The main eigenvectors of the SkP and the
BSky4 were very similar to that of SLy4, and the linear refits
needed no substantial adjustment of the parameters. The SkP
has the same density dependence (α = 1/6) as the SLy4, and
in fact we see from the table that the quality of the fit is virtually
identical. The BSky4 has a density dependence α = 1/3, the
value that is found for the many-body theory of a dilute Fermi
gas. Finally, we have also considered a parametrization with
a density dependence α = 1/2, the Skxce of Ref. [13]. In
this case, the original parameter set gave no acceptable fit for
applying the linear refit. We therefore made some iterations on
the fit to get a good starting point.

Comparing the different parameter sets, we see that there
is very little difference between the qualities of the fits, all of
them being in the range of 1.5–1.7 MeV. It is interesting to
calibrate this number by comparing with the r.m.s. residual of
the liquid drop model. The result of fitting Eq. (1) to the 2003
nuclear mass table [10] gives an r.m.s. residual of 2.95 MeV; we
quote in the last line of Table II the fit to even-even nuclei only.
We see that the SCMF achieves a factor of two improvement
in the calculated binding energies. Of course the SCMF has
twice as many parameters, but as we just saw that many are
superfluous from the point of view of the binding energies.
Still, one might have hoped for a more dramatic improvement
given the computational cost of the SCMF as compared to the
liquid drop formula.

III. MINIMAX FITS

We now consider a completely different fitting criterion,
the Chebyshev norm. The Chebyshev norm ε is defined as the
maximum absolute value of the residuals rA = Edata − Etheory,

ε = max
A

|rA|.

We call this value the “C-norm” for short. The object of the
fit is of course to minimize ε, hence the designation “minimax
fit.” In general, if the theory has N adjustable parameters, there
will be N + 1 members of the set that have a residual equal
to ε. We call these the critical cases. In searching for a better
theory, one can screen candidates by just testing them on this
set. If the new theory does not produce a smaller ε on the
critical set, it can be immediately rejected.

We perform the minimax fit using the Chebyshev norm
as follows. For an N-parameter theory, one first selects a
set of N + 1 nuclei and makes the fit with them. This can
be done by the least-squares method, which yields equal
residuals for N + 1 nuclei. Then the set is updated by replacing
members with other nuclei until a set is found that satisfies the
minimax condition. It is easy to choose a nucleus to add to
the set—simply take the nucleus with the largest residual. It
is not obvious which nucleus should be replaced. The ascent
algorithm described in ref. [1] gives a procedure that we found
to be quite robust, usually coming to the critical set after less
than 10 iterations.

We first apply the minimax fit to the five-parameter liquid
drop model, Eq. (1). Results are given in Table III. For the first
row, the formula was fitted to the 2149 nuclei in the 2003 mass
table having N,Z ! 8. Fitting to optimize the C-norm gives

TABLE III. Liquid drop model, comparing least squares fits with minimax fits of the 2003 and 1995
mass tables [10]. The fit does not include light nuclei (N or Z < 8).

Data set r.m.s. (MeV) C-norm (MeV) Overbound critical nuclei Underbound critical nuclei

2003 2.9 9.2 40Ar, 76Se, 77Br, 229Fr 100Sn, 132Sn
1995 3.0 8.0 73Ge, 101Nb, 230Ra 23O, 132Sn, 207Pb
2003 2.8 8.4 40Ar, 73As, 76Se, 229Fr 102Sn, 132Sn
σ < 0.2 MeV
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