R(D*) and other tauonic decays at LHCb

LHCb HCb

Federico Betti¹ on behalf of the LHCb Collaboration

LHCC – 2 March 2016

¹University of Bologna and INFN Bologna

Motivation

- Interactions with enhanced couplings to the third family of leptons are present in many **NP** models
- $\overline{B}^0 \rightarrow D^{(*)+} \tau^- \overline{v}_{\tau}$ decay is a sensitive probe for effects of **lepton** universality violation
- Ratio of branching fractions calculated precisely within the SM: $\mathcal{B}\left(\bar{B}^{0} \to D^{(*)+}\tau^{-}\bar{\nu}_{\tau}\right)$

Data sample and event selection

- Data collected by LHCb during 2011 (7 TeV) and 2012 (8 TeV), corresponding to 3.0 fb⁻¹
- Signal channel: $\bar{B}^{0} \rightarrow D^{*+} \tau^- \bar{v}_{\tau}$ with $\tau^- \rightarrow \mu^- \bar{v}_{\mu} v_{\tau}$
- Normalization channel:

$\mathcal{R}\left(D^{(*)}\right) = \frac{\mathcal{B}\left(\bar{B}^{0} \to D^{(*)+}\tau^{-}\bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B}^{0} \to D^{(*)+}\mu^{-}\bar{\nu}_{\mu}\right)}$

 $R(D) = 0.300 \pm 0.008 [I]$ $R(D^*) = 0.252 \pm 0.003 [2]$

- **BaBar** reported measurements of $R(D^*)$ and R(D) with deviations of 2.7 σ and 2.0 σ from the SM [3]
- Belle measurements of R(D*) and R(D) do not show a significant deviation from the SM [4]
- $\overline{B}^{0} \rightarrow D^{*+} \mu^{-} \overline{v}_{\mu}$

→ same visible **final-state** for signal and normalization

- Reconstruct $D^{*+} \rightarrow D^{0} \pi^{+}$
- $D^{*+}\mu^-$ candidates **isolated** from additional tracks in the event (MultiVariate Analysis)

Fit strategy

- Maximum likelihood **3D** fit in distributions of:
 - 1. E_{μ}^{*} = muon energy in the B rest frame
 - 2. q^2 = squared four-momentum of the lepton system
 - 3. $m_{miss}^2 = B^0$ missing mass squared
- Variables computed using the **approximation**: $(p_B)_z = \frac{m_B}{m_{reco}} (p_{reco})_z$ the resolution is sufficient to preserve the **discrimination** between signal and background
- Background and signal shapes extracted from control samples and simulations validated against data

Background sources	Control samples
D ^{*+} h [±] (misidentified μ)	Candidates where the track paired with the D^* fails the muon ID requirements
D^{**} μν _μ	Candidates where two tracks have a high MVA output
$B \rightarrow D^*H_cX$ with $H_c \rightarrow \mu v_{\mu}X$	Candidates where one track has a high MVA output and passes K [±] identification requirements
Combinatorial	Wrong sign candidates ($D^{*+}\mu^+$ and $D^0\pi^-\mu^-$)

Results

 $\mathcal{R}(D^*) = 0.336 \pm 0.027 \text{ (stat)} \pm 0.030 \text{ (syst)}$ [5] **2.** I σ larger than the SM expectation

[I] Phys.Rev. D92, 054510 (2015) [2] Phys.Rev. D85, 094025 (2012) [3] Phys. Rev. Lett. 109, 101802 (2012) [4] Phys. Rev. D 92, 072014 (2015) [5] Phys. Rev. Lett. 115, 111803 (2015)

References

LHCb can potentially study also: $\bar{B}^{0} \rightarrow D^{+} \tau^{-} \bar{v}_{\tau} \qquad \Lambda_{b}^{0} \rightarrow \Lambda_{c}^{(*)+} \tau^{-} \bar{v}_{\tau} \qquad B_{c}^{-} \rightarrow J/\psi \tau^{-} \bar{v}_{\tau} \qquad \bar{B}_{s}^{0} \rightarrow D_{s}^{+} \tau^{-} \bar{v}_{\tau}$ With both muonic and hadronic τ modes

background Remaining background $\overline{B}^{0} \rightarrow D^{*}D_{(S)}X$ suppressed requiring signal isolation criteria Expected precision **competitive** with [5] (stat ~6%, sist ~6%)