

Prospects for $|V_{ub}|$ measurements at LHCb

Slavomira Stefkova on behalf of the LHCb Collaboration

Why should LHCb measure |V_{ub}|?

Precision measurements of $|V_{ub}|$ allow : ***** testing of the unitarity of the CKM matrix [1] complementary

Analysis of $B^+ \rightarrow \mu^+ \mu^- \mu^+ \nu_\mu$ at LHCb

✓ Purely leptonic measurement of $|V_{ub}|$ at LHCb → similar search in Belle[5] and BaBar[6] factories is $B^+ \to \tau^+ \nu_{\tau}$ with

$$\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = \frac{G_F^2 m_{B^+} m_{\tau^+}^2}{8\pi} \left[1 - \frac{m_{\tau^+}^2}{m_{B^+}^2} \right]^2 f_{B^+}^2 |V_{ub}|^2 \tau_{B^+}.$$

- ✓ Three muons in final state → uses the excellent muon identification at LHCb and lifts helicity suppression of $B^+ \rightarrow \mu^+ \nu$ with respect to tauonic mode.
- \checkmark Not been observed yet.
- ✓ Sensitive to new physics such as a charged Higgs boson.
- ✓ As in $\Lambda_b^0 \rightarrow p\mu^- \overline{\nu_{\mu}}$, missing neutrino prevents mass fit \rightarrow use instead corrected mass.
- to the measurement of β .
- * improving precision on the least well known CKM element.
- * helping to resolve tension between exclusive and inclusive measurements of this parameter.
- ***** probing new physics.
- * helping predicting other branching ratios, such as $B^+ \rightarrow \tau^+ v_{\tau}$.

Tension in |V_{ub}| measurements

- ***** Inclusive measurements: |V_{ub}| = (4.49 ± 0.16(exp)^{+0.16}/_{-0.18}(theo)) × 10⁻³ [2]. Problem: Large background from B → X_clv_l and big theoretical uncertainty in region of suppressed B → X_clv_l contribution. ***** Exclusive measurements: |V_{ub}| = (3.72 ± 0.19) × 10⁻³ [2] → combination of B⁻ → πl⁻v_l measurements.
 - Problem: Smaller branching fractions, theoretical uncertainty due to

× If $\mathcal{B}(B^+ \to \mu^+ \mu^- \mu^+ \nu_{\mu}) \approx 10^{-8} \to \text{expect 35 events in Run 1, analysis ongoing.}$

Background Studies

To be able to supress different backgrounds series of Boosted Decision Trees (BDTs) were trained with simulation signal sample. Main backgrounds to consider are:

- ***** misidentified background one of the muon is misidentified as kaon, pion or proton, e.g. cascade decays $B \rightarrow D(K\mu\nu)\mu\nu$.
- ***** combinatorial background random combinations of tracks passing the stripping selection. ***** partially reconstructed background where not all final state particles are reconstructed, e.g. B⁺ → D⁰(K⁺π⁻μ⁺μ⁻)μ⁺ν_μ.

form factors.

First LHCb measurement: $\Lambda_{\mathbf{b}}^{\mathbf{0}} \rightarrow \mathbf{p}\mu^{-}\overline{\nu_{\mu}}$ decay [3]

* First observation of the decay of $\Lambda_b^0 \to p\mu^- \overline{\nu_\mu}$ using LHCb's unique $\Lambda_b^0 s$ sample. * First measurement of the $|V_{ub}|$ in hadron collider. * LHCb measured of the ratio of branching fractions in theory favorable q^2 region

$$\frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \overline{\nu_{\mu}})_{q^2 > 15 GeV/c^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu_{\mu}})_{q^2 > 7 GeV/c^2}}.$$

Together with relevant form factors by LQCD predictions and world average of $|V_{cb}|$ from exclusive modes, LHCb measures

Possible other LHCb |Vub | Measurements

* Possible semileptonic exclusive modes that could be considered:
(a) The lattice predictions [7] for B⁰_s → K⁺μ⁻ν_μ are twice as good as for B → πlν or Λ⁰_b → plν, however, many backgrounds coming from Λ⁺_c, D_s, D⁺, D⁰ to consider. Analysis ongoing.
(b) Use of B_c mesons, e.g B⁺_c → D⁰μ⁺ν_μ.
(c) Excited versions of viable modes, e.g. B → ppµν, B → ρµν.

 $|V_{ub}| = (3.27 \pm 0.15(exp) \pm 0.16(theo) \pm 0.06(|V_{cb}|)) \times 10^{-3}$. * Fit was performed to corrected mass variable which accounts for missing neutrino in a final state,

 $M_{(\Lambda_{b}^{0})_{corr}} = \sqrt{M_{p\mu^{-}}^{2} + |p_{T}^{'2}|} + |p_{T}^{'}|,$

where the M²_{pµ⁻} is the invariant visible mass squared and p^{'2}_T is the missing momentum squared transverse to the direction of flight of Λ⁰_b, see left figure.
* One of the most precise exclusive measurements of |V_{ub}|.
* Confirms tension between exclusive and inclusive measurements at 3.5 σ.
* Sizeable right-handed coupling is not feasible [4], see right figure.

References

[1] CKMfitter Group, J. Charles et al., Eur. Phys. J. C41, 1-131 (2005).
 [2] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.
 [3] LHCb collaboration, R. Aaij et al., Nature Phys. 11 (2015) 743-747.
 [4] F. U. Bernlochner, Z. Ligeti, and S. Turczyk, Phys. Rev. D90 (2014) 094003.
 [5] Belle Collaboration, I. Adachi et al., Phys. Rev. Lett. 110 (2013), no. 13 131801.
 [6] BaBar Collaboration, J. P. Lees et al., Phys. Rev. D88 (2013), no. 3 031102.
 [7] J. M. Flynn et al., Phys. Rev. D91 (2015), no. 7 074510.

Slavomira.Stefkova@cern.ch · HEP · Imperial College London · LHCC Poster Session · 02.03.2016