LHCC Poster Session – CERN, March 2nd 2016

Maximising the ATLAS B physics trigger potential with topological selections

B Physics Programme

The ATLAS B Physics programme for Run 2 probes for signs of new physics and provides precision constraints of the Standard Model.

There are four final states ($B_s \rightarrow \mu\mu$, $B_s \rightarrow J/\psi\Phi$, $B_d \rightarrow \mu\mu K^*$, $Y(nS) \rightarrow \mu\mu$) that can be considered **prototypical** of the **Run 2 programme** with regards to online event selection. This study maximizes their collection potential by exploiting the ATLAS Level-1 Trigger upgrade.

Level-1 Bottleneck

During Run 2, the ATLAS detector is expected to record data under unprecedented high luminosity conditions. Due to **bandwidth limitations**, using the existing di-muon selections would impose higher p_T thresholds and/or prescaling lower p_T triggers. This would decrease the available statistics and **hinder the competitiveness of the ATLAS**

B Physics Triggers $p_T(\mu_1)$ **B** Physics signals are typically detected in **ATLAS by triggering on muons** that pass given transverse momentum (p_T)

thresholds.

In Run 1, the only requirement of these triggers was that one or more muons had a of p_T greater than 4 or 6 GeV. The yields for these triggers in Run 2 (thus far) are shown right (Figure 1).

B Physics programme.

This scenario can be avoided by introducing new rejection criteria, and in particular exploiting newly available topological selections in the ATLAS Level-1 Trigger.

2 Topological Selections: "L1Topo"

The ATLAS L1Topo system provides the functionality to pair Level-1 primitives and select events based on their combined kinematic and topological properties.

Two Level-1 muon (see Figure 2) can be combined in L1Topo to coarsely construct quantities such as the **invariant mass m(µµ)**, ΔR , azimuthal $\Delta \phi$ and pseudorapidity $\Delta \eta$ differences between the two muons.

Due to the coarse resolution of these quantities at Level-1, the **di-muon selection discrimination** can be **maximized selecting** events based on **m(µµ) and a** secondary **correlated quantity**.

Figure 2: Highly simplified overview of the Level-1 trigger with only the subsystems most pertinent to B Physics.

3 B Physics L1Topo Optimizations

L1Topo selections were optimized by maximizing the signal to background ratio. Rectangular selections in $m(\mu\mu)$ and ΔR were chosen as they provided the best discrimination power. The prototype signals were modelled with simulated MC samples, while the background was realistically evaluated with a high pile-up minimum bias run (see Figure 3). The optimization was repeated for multiple background rejection levels, providing a comparison with existing di-muon only triggers (section 5).

4 $B_d^0 \rightarrow \mu \mu K^*$: Optimization Improvements

The **optimizations** from section 3 **do not preserve the low m(µµ) region** to which the $B_d \rightarrow \mu\mu K^*$ analysis is highly interested (see Figure 4).

The large amount of background in this region (see Figure 3 right) means it is **not possible to keep the background rejection** sufficiently **high without sacrificing the low m(µµ) events**.

Low mass events are kept by complementing topological selections with higher p_T di-muon triggers (such as MU10_2MU6 and 2MU10).

Figure 4: Trigger efficiencies binned in the di-muon invariant mass squared $(m(\mu\mu)^2)$ for simulated $B_d \rightarrow \mu\mu K^*$ events passing various dimuon L1 triggers. For each selection, the efficiencies are normalized, per $m(\mu\mu)^2$ bin, to the number of events in that bin passing offline reconstruction. While topological selections are inefficient at low $m(\mu\mu)^2$, higher p_T di-muon triggers still preserve this region.

Figure 3: Normalised distributions of ΔR and invariant mass, as reconstructed with the granularity of L1Topo. Simulated $B_s^0 \rightarrow \mu\mu$ events (left) and run 212967 events (right) that pass the Level-1 2MU4 trigger are shown. The largest portion of background events reside in the low m($\mu\mu$)- ΔR region while the majority of the $B_s^0 \rightarrow \mu\mu$ signal is situated in higher regions. This demonstrates how rectangular cuts can be used to improve rejection power.

5

L1Topo Menu for B Physics

The B Physics menu (see Table 1 and Figure 4) was constructed from the optimized selections described in section 3. The selections target increasing levels of background rejection. This provides a set of working points that match the range luminosity of conditions expected in Run 2. It is a comparable scheme to the existing set of di-muon triggers but **for high luminosities it improves the signal yield by a factor of x5– x10.**

٢	Level-1 muon	-1 muon Topo cut		Background	Signal efficiencies		Table 1: Optimized L1Topo menu	
	thresholds	$m(\mu\mu)$ [GeV]	ΔR	rejection	$B_s^0 \to \mu\mu$	$B_s^0 \to J/\psi\phi, J/\psi \to \mu\mu$	$\Upsilon(1S) \to \mu\mu$	(blue) along with di-muon only
-	2MU4		_	0.00 (baseline)	1.00	1.00	1.00	triggers (red), sorted in ascending levels of background rejection. The optimizations in section 3 were performed separately for each physics channel. The background rejection column is for the logical OR of all selections in a given row and can be used to determine the trigger rate in Figure 4.
	MU6_2MU4		_	0.40	0.97	0.93	0.89	
	2MU4	1 - 19	0-3.4	0.50	0.98	0.93	0.97	
	914 114	2-8	0 - 1.5	0.78	0.97	0.77	_	
\neg	211104	7 - 14	0 - 2.4		_	—	0.75	
-	2MU6	_	_	0.80	0.65	0.55	0.46	
	MU6_2MU4	2 - 8	0.0 - 1.5	0.86	0.93	0.74	_	
		8 - 13	0.0 - 2.2		—	—	0.60	
	2MU10		—	0.95	0.23	0.17	0.12	
	9MU6	∕7 2−9	0.2 - 1.5	0.06	0.60	0.47		
	211100	8–13	0-2.2	0.90	_	—	0.40	
								normalized with respect to the
	$B_s \rightarrow \mu\mu$ and $B_s \rightarrow J/\psi\Phi$ selection		Logical $Y(1S) \rightarrow$		$\mu\mu$ =	Background rejection	that	Level-1 2MU4 trigger.
			OR	selection		determines B Trigger	ate	

Figure 5: Estimated Level-1 background and signal rates, at a L = $5x10^{33}$ cm⁻²s⁻¹ the Run 2 B Physics L1Topo. The B_s $\rightarrow \mu\mu$ signal yield was scaled up by 10³ for visual clarity. An additional correction by a factor of 1.5–2 is to be applied on the x-axis in order to scale the 7/8 TeV simulated signal samples to the centre of mass energy in Run 2 (13TeV)[1].

Conclusions

- ATLAS Run 2 B Physics programme is dependent on statistics
 - At higher luminosities the potential statistics would be reduced due to bandwidth limitations
 - > New strategy needed
- The new strategy provided was developed using topological selections
 - These selections target background rejection levels that should match the various luminosity conditions expected in Run 2
 - The strategy is well optimized for three prototypical channels
 - The remaining (B⁰_d→ μμK^{*}) channel is well optimized for overall signal but...
 ▶ higher p_T di-muon triggers must be used to recover the low m(μμ) events

O.J Winston (University of Sussex) on behalf of the ATLAS collaboration

[1] ATLAS B-physics studies at increased LHC luminosity, potential for CP-violation measurement in the B s \rightarrow J/ $\psi\phi$ decay. Technical Report ATL-PHYS-PUB-2013-010, CERN, Geneva, Sep 2013

