Results on (anti-)(hyper-)nuclei production and searches for exotic bound states with ALICE at the LHC

Stefano Trogolo⁽¹⁾ on behalf of the ALICE Collaboration

⁽¹⁾Università degli Studi di Torino and INFN stefano.trogolo@cern.ch

1. Introduction

- LHC energies lead to large production probabilities for (anti-)(hyper-)nuclei and exotic states
- At these energies large and equal amounts of particles and anti-particles are produced in the mid-rapidity region
- Production mechanism:

THERMAL Model [1]

- Hadrons emitted from the interaction region at the *chemical freeze-out* temperature (*T*_{chem})
- Abundance of species $\propto \exp(-m/T_{chem})$
- (Hyper-)nuclei large m \longrightarrow strong dependence on T_{chem}

2. ALICE

Excellent particle identification and high performance tracking and vertexing allow one to measure the production of (anti-)(hyper-)nuclei and exotic states

Time Projection Chamber

 Specific energy loss dE/dx $(\sigma_{\rm TPC} \simeq 7\% \text{ in })$ central Pb-Pb) Clear nuclei separation at low p/z

COALESCENCE Model [2]

- (Anti-)baryons close in the phase space at the *kinetic freeze-out* can form a (anti-)(hyper-)nucleus
- Formation probability can be quantified through the *coalescence parameter* B_A
- In a naive approach B_A is expected to be independent of p_T and centrality

References

[1] A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stocker. *Phys. Lett. B* 697, 203 (2011) [2] S. T. Butler, C. A. Pearson. *Phys. Rev.* 129, 836 (1963) [3] J. Gosset, et al. *Phys. Rev. C* 16, 629 (1977)

 $\sqrt{s_{_{
m NN}}}$ (GeV) $E_A \frac{d^3 N_A}{d^3 p_A}$

 $B_A = -$

 $\left(E_{p}\frac{d^{3}N_{p}}{d^{3}p_{p}}\right)^{A}$ [3]

 $*A = N_{\text{proton}} + N_{\text{neutron}}$

pp \sqrt{s} = 0.9, 2.76, 7, 8, 13 TeV **p-Pb** $\sqrt{s_{NN}}$ = 5.02 TeV **Pb-Pb** $\sqrt{s_{NN}}$ = 2.76 TeV

Inner Tracking System

• $\sigma_{\text{DCA}_{xy}} < 100 \ \mu\text{m}$ for $p_{\text{T}} > 0.5 \ \text{GeV}/c$ (in Pb-Pb collisions) separation of primary and secondary nuclei produced in material knock-out via DCA_{xy} measurement

References [4] ALICE Collaboration. Int. J. Mod. Phys. A 29 (2014) 1430044

3. Nuclei

зНе

10 ⁻⁷			[• 0-2	20%	
				• 20-	80%	
10 ⁻⁸	0.6 0.8 1	1.2 1.4	1.6 1.8	2	2.2	2.4
			p	/ A /	(Ge\	l/c

4. Hypertriton

- $(Anti-)^{3}_{\Lambda}H$ lightest known hypernucleus: bound state of **p**, **n** and Λ
- Identification via charged mesonic 2-body decay channel up to 10 GeV/c in 0-10% central Pb-Pb collisions

DCA ³He

to PV

Primary

Vertex

2-body decay topology

- B.R. [8] (2-body) ≅ 25%
- Mass = $2.992 \text{ GeV}/c^2$
- Λ binding energy
- $B_{\Lambda} = 0.13 \pm 0.05 \text{ MeV}/c^2$
- Λ-free lifetime ~ 263 ps

Markov Production yield

• $p_{\rm T}$ spectra for the 0-10% central collisions

ALICE 0-10%

Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV

4 5 6 7 8

p_{_}(GeV/c)

- Blast-Wave fit to extract the particle yields integrated over full p_{T}
- d*N*/dy x B.R. compared with thermal models over B.R. range
- Model assuming thermal equilibrium and $T_{chem} = 156 \text{ MeV}$ (GSI-Heidelberg) and UrQMD model (hadron transportation and initial hydrodynamical stage) are favoured Phys. Lett. B 754, 360-372 (2016)

B.B

×

dN/dy

- Data

Hybrid UrQMD Model

0.2

0.15

Intermination

- Hypertriton lifetime is expected to be slightly below than Λ lifetime
- ${}^{3}_{\Lambda}$ H and ${}^{3}_{\overline{\Lambda}}$ H in 0-10% and 10-50% centrality used for lifetime determination
- Exponential fit to dN/d(ct) distribution to obtain the proper decay length $c\tau$
- Comparison with published experimental lifetime estimates

(GeV/c) Secondary DCA Vertex tracks m × 410U Pointing angle /رp¹dp/N $^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$ $\frac{3}{4}\overline{H} \rightarrow 3\overline{He} + \pi^{+}$ • ${}^{3}_{\Lambda}$ H DCA π □ ³_→H to PV 2 3

5. Exotica

- **M** H-dibaryon and Λn bound state discovery would be important as it would provide crucial information on the Λ -nucleon and Λ - Λ interaction
- \checkmark H-dibaryon is a hypothetical bound state of *uuddss* ($\Lambda\Lambda$), first predicted by R.L. Jaffe [10] using a bag model approach
- Assumption of weakly-bound H-dibaryon
 - $m_H < \Lambda\Lambda$ threshold (2.231 GeV/ c^2)
 - $H \rightarrow \Lambda p \pi^{-}$ measurable channel
- Search for An bound state in the decay channel • $\overline{\Lambda n} \longrightarrow \overline{d} \pi^+$
- \checkmark Prediction from thermal model ($T_{chem} = 156 \text{ MeV}$)
- $dN/dy = 6.03 \times 10^{-3}$ for H-dibaryon
- $dN/dy = 4.06 \times 10^{-2}$ for Λn

☑ ALICE upper limits are a factor 20 below these model predictions for the Λ -free lifetime

6. Conclusion and perspective

- (Hyper-)Nuclei production in heavy-ions collisions described by equilibrium thermal model ($T_{chem} =$ $\mathbf{\overline{\mathbf{V}}}$ 156 MeV) and coalescence model
- ALICE tested the CPT symmetry in the nuclei sector with an excellent precision
- H-dibaryon and An search in Pb-Pb lead to upper limits which are at least one order of magnitude lower than thermal model predictions
- ALICE measured the $^{3}_{\Lambda}$ H lifetime in the charged mesonic 2-body decay channel and started the analysis in the 3-body decay channel ($^{3}_{\Lambda}H \rightarrow dp\pi^{-}$). Run2 will be crucial to improve the resolution on this measurements
- LHC Run2 will allow us to enhance the measurements in the nuclei sector thus improving the constraints on the theoretical models (e.g. coalescence)
- Very good improvement in (anti-)(hyper-)matter studies thanks to the ALICE Upgrade Program in LS2

